

Observations of the relativistic SZ effect: from *Planck* to CCAT-prime

Jens Erler Kaustuv Basu, Jens Chluba & Frank Bertoldi

ICM temperature measurements

The tSZ rel. corrections allow

- independent measurement of T_e
- direct measurement of n_e
- Measurements at high z

The temperature of the ICM is tightly related to the total (hydrostatic) mass of galaxy clusters

The Planck mission

- 3rd generation CMB experiment
- Observed CMB from 2009 to 2013 from L2 in 9 frequency bands
- 8 full all-sky surveys
- Resolution between 30' (30 GHz) and 5' (857 GHz)
- Full data release in Feb. 2015

Credit: ESA Planck Collaboration

Why Planck?

- Planck covers the entire SZE spectrum
- Planck has all-sky coverage
- Good sensitivity
- Drawback: low resolution

Galactic Foregrounds

Credit: ESA Planck Collaboration

Sample Selection

Stacked Cluster Sample

Matched Filtering

Uncorrelated foregrounds can be reduced by matched filtering

Stacked Cluster Sample

Stacked Cluster Sample

Extracted Spectrum

Extracted Spectrum

Extracted Spectrum

Results

Extracted Spectrum: 100 most massive

Results: 100 most massive

What is next?

PRISM

- 32 channels
- 3.5m aperture

COrE

- 19 channels
- 1.5m aperture

PIXIE

- 400 channels
- ~degree resolution

ν	FWHM	ΔT	ΔT	ΔI
GHz	arcmin	mK _{RJ} -arcmin	mK _{CMB} -arcmin	kJy/sr-arcmin
	Plan	a <u>ck (all-sky-</u> avera	ge full mission dat	a)
100	9.68	61.4	77.3	18.9
143	7.30	19.8	33.4	12.4
217	5.02	15.5	46.5	22.5
353	4.94	11.7	156	44.9
545	4.83	5.10	806	46.8
857	4.64	1.90	1.92×10^{4}	43.5
	C	CCAT-p (4000 h,	1000 deg² survey)	
95	2.2	3.9	4.9	1.1
150	1.4	3.7	6.4	2.6
226	0.9	1.5	4.9	2.4
273	0.8	1.2	6.2	2.7
350	0.6	2.1	25	7.9
405	0.5	3.1	72	16
862	0.2	4.7	6.9×10^{4}	109

G. Stacey

ν	FWHM	ΔT	ΔT	ΔI
GHz	arcmin	mK _{RJ} -arcmin	mK _{CMB} -arcmin	kJy/sr-arcmin
	Plan	nck (all-sky-avera	ge full mission dat	a)
100	9.68	61.4	77.3	18.9
143	7.30	19.8	33.4	12.4
217	5.02	15.5	46.5	22.5
353	4.94	11.7	156	44.9
545	4.83	5.10	806	46.8
857	4.64	1.90	1.92×10^{4}	43.5
	C	CCAT-p (4000 h,	1000 deg ² survey)	
95	2.2	3.9	4.9	1.1
150	1.4	3.7	6.4	2.6
226	0.9	1.5	4.9	2.4
273	0.8	1.2	6.2	2.7
350	0.6	2.1	25	7.9
405	0.5	3.1	72	16
862	0.2	4.7	6.9×10^{4}	109

CCAT-prime simulations

CCAT-prime simulations

- The SZ effect is a powerful tool to study clusters
- Rel. corrections to the SZ allow to measure ICM temperature
- Galactic foregrounds and cluster FIR-emission are major challenges
- CCAT-prime will measure the rSZ and kSZ with high precision