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        Summary 
 
 
The nodding of a telescope is investigated with the goal to minimize the time 
needed for any given nod amplitude. For this an algorithm is presented, which is 
particularly useful for telescope drives with acceleration, deceleration and 
velocity limitations. In order to avoid unnecessary settling time requirements the 
algorithm is optimized in order to achieve settling already during deceleration 
under full regulator control. The acceleration is not regulated, but is at full 
power instead. In case the position information is available in larger time 
intervals only, the algorithm extrapolates the position information and thereby 
reduces delay problems. The algorithm is tested by computer simulation and is also 
in use at the Gornergrat KOSMA telescope. The method is proposed for the control of 
the SWAS satellite. 
 
 
 
        Introduction 
 
 
The control of a closed loop under certain limitations of maximum speed and/or 
maximum acceleration is a familiar problem to all, who try to move a telescope as 
fast as possible from one position to the next. The reason is that all motors used 
to drive the telescope develop a limited maximum torque, since there is a limit to 
the maximum current through the coils of the motors. In order to move the device 
with minimum time from position X1 to X2 (eventually at speeds V1 and V2 
respectively), it is obvious that this can be achieved only on a parabolic position 
curve, which is automatically generated when moving under maximum acceleration AM 
and deceleration DM respectively. In most cases there exists also a maximum speed 
VM, which is also a result of the motor properties. (For a spacecraft, controlled 
with reaction wheels, the same conditions should apply as for a normal telescope 
drive.) We can write for the position at maximum acceleration: 
 

     𝑋(𝑡)  =    𝑋1  +  𝑉1 ∙ 𝑡 +  𝐴𝑀
2

 ∙  𝑡2 
           0  ≤  t  ≤  t1 
     𝑉(𝑡)  =    𝑉1  +  𝐴𝑀 ∙ 𝑡 
 

For a movement from position X1 (with velocity V1) to position X2 (with velocity V2) 
we can solve now for the time t1, where the acceleration has to be inverted to 
maximum deceleration, so that the position X2 is reached at the best possible time 
t2. Deceleration can be described with: 
 

     𝑋(𝑡)   =    𝑋2  −   𝑉2 ∙ (𝑡2 − 𝑡) −   𝐷𝑀
2

 ∙ (𝑡2 − 𝑡)2 
       t1  ≤  t  ≤  t2 
      𝑉(𝑡)  =    𝑉2 +  𝐷𝑀 ∙ (𝑡2 − 𝑡) 
 

Velocity and position have to be identical at time t1 in both, the acceleration and 
deceleration equations. Combining the two velocity equations at time t1 we find for 
the deceleration time interval  
 

      𝑡2  −   𝑡1   =    𝐴𝑀
𝐷𝑀

  ∙   𝑡1  +  𝑉1−𝑉2
𝐷𝑀

. 
 

Together with the position equations, again used at time t1, one finds now for t1: 
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The minimum deceleration time t2-t1 needed under the given circumstances is 
therefore also found: 
 

    𝑡2 − 𝑡1  =   1
𝐷𝑀
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Thus we have for the full time needed: 
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For the following we consider only the simpler case of V1 and V2 set to zero. The 
system should now follow the following path: 
 

    𝑋(𝑡)  =    

⎩
⎪
⎨

⎪
⎧

 𝑋1                                                                                     𝑡   <    0
  𝑋1 + 𝐴𝑀

2
 ∙  𝑡2 ∙ 𝑆𝑆𝑆𝑆(𝑋2 −  𝑋1)                  0   ≤    𝑡  <    𝑡1

  𝑋2 −  𝐷𝑀
2

 ∙  (𝑡2 − 𝑡)2 ∙ 𝑆𝑆𝑆𝑆(𝑋2 −  𝑋1)     𝑡1    ≤    𝑡  <    𝑡2
 𝑋2                                                                      𝑡2    ≤    𝑡            

 

 

The velocity develops like (sawtooth): 
 

    𝑉(𝑡)   =    �

0                                                                                      𝑡   <    0
  𝐴𝑀  ∙  𝑡 ∙ 𝑆𝑆𝑆𝑆(𝑋2 −  𝑋2)                             0   ≤    𝑡   <    𝑡1
  𝐷𝑀  ∙ (𝑡2 −  𝑡) ∙ 𝑆𝑆𝑆𝑆(𝑋2 −  𝑋2)                𝑡1   ≤    𝑡   <    𝑡2

0                                                                        𝑡2   ≤    𝑡             

, 

 

and the acceleration is: 
 

    𝐴(𝑡)   =    �

 0                                                                                      𝑡   <    0
   𝐴𝑀  ∙ 𝑆𝑆𝑆𝑆(𝑋2 −  𝑋1)                                   0   ≤    𝑡   <    𝑡1
−𝐷𝑀  ∙ 𝑆𝑆𝑆𝑆(𝑋2 −  𝑋1)                                   𝑡1   ≤    𝑡   <    𝑡2

 0                                                                        𝑡2   ≤    𝑡             

   

 

In case the two positions are rather far apart it is very likely, that a maximum 
velocity VM is reached, which is limited by the maximum speed of the motors. This 
happens, if we have for the nod amplitude: 
 

     |𝑋2 −  𝑋1|   >    𝑉𝑀
2
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The total time needed for a nod from X1 to X2 is then: 
 

     𝑡𝑡𝑡𝑡   =    |𝑋2− 𝑋1|
𝑉𝑚

 +  𝑉𝑀
2
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The time intervals ΔtA and ΔtD, during which acceleration or deceleration occur are 
then: 
 

     ∆𝑡𝐴  =   𝑉𝑀
𝐴𝑀

,         ∆𝑡𝐷  =   𝑉𝑀
𝐷𝑀
 

 

For a real system it is not very convenient to calculate the best path in advance. 
Instead, it is much better for the purposes of a servo loop to derive the correct 
information from the actual position of the telescope or the spacecraft 
respectively. For this we have to identify the location, from which a maximum 
deceleration brings the telescope right to the point with the correct velocity. 
 
 
 
        The algorithm 
 
 
In general, there is a schedule for the telescope positions, represented by the 
desired position S(t) (eventually with desired velocity VS(t)), which e.g. defines 
the Position S1 for times smaller than zero and the position S2 for larger t. This 
is the typical situation for a simple nod between two positions. (Keep in mind that 
S(t) is the desired position and X(t) the actual position.) We assume that at t > 0 
the system starts with maximum acceleration AM. In order to find the precise time 
t1, or better, the correct actual position X(t1), where acceleration stops and the 
maximum deceleration has to start, we write: 
 



     𝑆(𝑡1 + 𝑇)   =    𝑋(𝑡1 + 𝑇)    =    𝑋(𝑡1) +  𝑉(𝑡1) ∙ 𝑇 −   𝐷𝑀
2

 ∙  𝑇2,    (1) 
 

because the desired and actual positions should agree at the time t = t1+T. T is 
the deceleration time interval, after which the desired position S2 should be 
reached. The simple quadratic dependence reflects the fact that only a constant 
deceleration DM is applied. We assume, that S(t) is also moving with a desired 
velocity VS, which is supposed to be constant. Thus we can write: 
 

     𝑆(𝑡1 + 𝑇)  =    𝑆(𝑡1) + 𝑉𝑆 ∙ 𝑇    
 

The time interval T is the time needed to arrive at the correct position with 
desired velocity VS under full deceleration, and it needs to be determined. 
 

We also have that the velocity has to be the desired velocity VS, once the correct 
position has been found: 
 

    𝑉(𝑡1 + 𝑇)  =    𝑉𝑆   =    𝑉(𝑡1)−  𝐷𝑀  ∙ 𝑇                     (2) 
 

From this we find the unknown time interval T with: 
 

     𝑇  =    |𝑉(𝑡1)− 𝑉𝑆|
𝐷𝑀

          (3) 
 

The absolute value sign is used here in order to consider also the case when moving 
to positions with smaller reading than that at the beginning. Implementing this 
into (1) we get the position, at which we have to start to decelerate at full 
power: 

      𝑋(𝑡1)   =    𝑆(𝑡1)  −   (𝑉(𝑡1)−  𝑉𝑆)  ∙   |𝑉(𝑡1) − 𝑉𝑆|
2∙𝐷𝑀

      (4) 
 

The position X(t) as well as the velocity V(t) can be measured during the slew of 
the telescope. S(t) and VS are data provided by the observing program, which 
determines all movements of the telescope. With this, the precise begin of the 
deceleration t1 can be found from the permanently ongoing measurements of the 
position X(t). The velocity V(t) is to be derived as the difference of adjacent 
position measurements for example (see below). 
 

(For the following we set the desired velocity VS to zero, since for a satellite 
like SWAS the sources will not move on sky.) From the time t1 on the position of 
the telescope should develop like: 
 

     𝑋(𝑡)   =    𝑋(𝑡1)  +   𝑉(𝑡1)  ∙ (𝑡 − 𝑡1)−  𝐷𝑀
2

 ∙ (𝑡 − 𝑡1)2 
            (5) 

          =    𝑆(𝑡1)−   𝑉(𝑡1)∙|𝑉(𝑡1)|
2∙𝐷𝑀

 +   𝑉(𝑡1) ∙ (𝑡 − 𝑡1)−  𝐷𝑀
2

 ∙  (𝑡 − 𝑡1)2 
 

This is what should be fed into the regulator as a ”reference position” XR(t) 
during the deceleration phase. In addition we have for the velocity: 
 

     𝑉(𝑡)   =   𝑉(𝑡1)−   𝐷𝑀 ∙  (𝑡 − 𝑡1)        (6) 
 

These formulas are correct as long as the instrument moves with the maximum 
deceleration, which is supposed to be constant. If we use this equation to replace 
the time interval t-t1, we get from equ.(5): 
 

     𝑋𝑅(𝑡)   =    𝑆(𝑡)−   𝑉(𝑡) ∙ |𝑉(𝑡)|
2∙𝐷𝑀

        (7) 
 

The index ”R” is introduced for the new reference the telescope should follow 
instead of the S(t) as used before. The basic idea is that instead of feeding 
instantaneous jumps from one position (S1) to the next (S2) into the regulator, one 
uses now a path, the motors of the telescope drive are able to follow. This 
equation requires the actual velocity reading from the telescope in order to 
determine the proper ”reference position” for the servo loop. The trick with this 
reference is, that the servo loop can start to regulate to this function along the 
path of deceleration beginning at time t1, therefore all settling problems can be 
taken care of during this time. This means, that there is very little precious 
settling time wasted after having reached the desired position, as it usually 
happens with most of the position regulators used so far. Equ.(7) serves as a 
filter for the input data to the regulator, so that the regulator can always follow 
the input instead of running into a nonlinear regime, where oscillations would 
start to build up in a disastrous way. 
 



Instead of using this new reference for the period of deceleration only, it is now 
assumed, that the filter algorithm of equ.(7) is used for any time t. (Therefore we 
call it XR, again ”R” stands for ”Reference”.) In consequence, the calculated 
reference is far off the true position as long as the system does not decelerate. 
Therefore, the calculated reference causes the system to move under maximum 
acceleration. The deceleration phase on the other hand is supposed to follow the 
calculated reference position exactly. In order to ensure, that the deceleration 
can be performed under full regulator control, it is vital that the assumed maximum 
deceleration DM is not exactly equal to the maximum value set by the hardware. 
Instead it has to be slightly lower, so that the path defined by equ.(7) can be 
followed really under full regulator control. 
 
 
 
        The problem of data delay 
 
 
The formulas given before should solve most problems with settling, but, there is 
always the additional problem of delay between actual position/velocity and the 
time, when the readings of position/velocity are available. At least the velocity 
can only be determined after two subsequent readings of the position in most cases. 
Therefore, the algorithm must be modified taking into account, that there is some 
time delay present in the system. Let us assume that this time delay "d" is always 
constant. In this case we can replace the velocity V(t) by expressions at earlier 
times, which than takes care of the delay in the system. In fact, to turn it 
around, we want to calculate the necessary reference position at a certain time in 
the future with respect to the position readings before, therefore we calculate: 
 

     𝑉(𝑡)   =    5∙𝑋(𝑡−𝑑)  −  8∙𝑋(𝑡−2∙𝑑) +3∙𝑋(𝑡−3∙𝑑)
2∙𝑑

        (8) 
 

The time interval ”d” is determined by the repetition rate of the position readings 
of the telescope. This expression is found from the simple expansion: 
 

     𝑋(𝑡 − 𝛿)   =    𝑋(𝑡)  −  𝑉(𝑡) ∙ 𝛿 +  𝐴(𝑡)
2

 ∙  𝛿2 
 

Using the values δ = d, 2*d, 3*d, formula (8) is easily derived. 
 

With the same derivation, we also find for the actual position: 
 

     𝑋(𝑡)    =    3 ∙ 𝑋(𝑡 − 𝑑)− 3 ∙ 𝑋(𝑡 − 2 ∙ 𝑑) + 𝑋(𝑡 − 3 ∙ 𝑑)     (9) 
 

Both formulas, equs.(8) and (9), are exact as long as the system moves under 
constant acceleration or deceleration and are therefore fully justified. This is 
obviously true for an optimized move of the satellite as described before. 
Therefore, with these formulas one obtains a very good "prediction" of the present 
status of the system without being able to measure it at the proper time. If 
expression (8) is inserted into equ.(7) we have a reasonable estimate of the 
present velocity V(t) from earlier position readings without any negative impact on 
the servo loop itself. 
 

The algorithm, equ.(7) together with (8) and (9), serves as a filter for the 
desired position input to the regulator. It guarantees that the required 
acceleration never exceeds the capacity of the motor drives in use. The (ideal) 
regulator itself gives maximum output resulting in maximum acceleration anyway, as 
long as the actual and reference position do not agree. The filter given above 
therefore does nothing else than the output of an ordinray PI-regulator would 
provide, if there would be no time constant or bandwidth limitation of the 
regulator involved. Thus, it is the advantage of the algorithm that it somehow 
looks into the future, something a normal regulator never could do. 
 
 
 
        Control of velocity 
 
 
At least for a telescope, the regulator can control the speed of the motor drives 
only, and not the position. The control is accomplished by controlling the current 



fed to the motors. For the reaction wheels on a satellite, the situation may be 
either the same or the current determines the acceleration instead. In the first 
case we have in fact a velocity controller instead of a position controller, in the 
second we have an acceleration controller. For a normal telescope drive we have to 
consider the first case. On the other hand, the encoders of a telescope usually 
deliver position data. These must be converted into velocity information, which 
requires at least two readings of the position or even three as is shown above 
(equ.(8)). In addition, a proportional/integral regulator requires also the 
integrated velocity, which is the position (equ.(9)). For both, velocity and 
position, there must be an algorithm in order to control the reference input to the 
regulator. The reference position is described by equ.(7). For the reference 
velocity VR(t) we can derive an expression in a similar fashion as for the position 
XR(t) with: 
 

     𝑉𝑅(𝑡)   =    𝑉𝑆  +   𝑆𝑆𝑆𝑆[𝑆(𝑡)−𝑋(𝑡)]  ∙  �2 ∙ 𝐷𝑀 ∙  |𝑆(𝑡)− 𝑋(𝑡)|    (10) 
 

(This is just the reversed formula of equ.(7) with non-zero VS.) This calculated 
reference velocity is now dependent on the actual position X(t), which must be 
calculated from the earlier readings as is given by equ.(9). 
 

The proportional part of the regulator output is now the difference of the 
reference velocity VR(t) as given by equ.(10) (together with equ.(9)) and the true 
velocity V(t) as calculated from equ.(8)). The integrator part is the difference of 
the reference position XR(t) given by equ.(7) (together with equ.(8)) and the true 
position X(t) as calculated by equ.(9)). The sum of both with some gain factors (to 
be determined) is the total regulator output. Thus we have for the regulator 
amplifier output DR(t): 
 

     𝐷𝑅(𝑡)   =    𝐺𝑃𝑃𝑃𝑃 ∙  [𝑉𝑅(𝑡)− 𝑉(𝑡)]  +  𝐺𝐼𝐼𝐼 ∙  [𝑋𝑅(𝑡)−𝑋(𝑡)]    (11) 
 

GProp and GInt are the gain factors used for the proportional and integral part of 
the regulator amplifier. Any eventual differential part in the regulator is not of 
much interest, because it would force the regulator output into the maximum 
acceleration mode almost continuously. It does therefore nothing else as is 
provided already by the proportional/integral part anyway. 
 
 
 
        Computer simulation 
 
 
In principle, the algorithm presented here should improve the nodding speed 
significantly, but, it is certainly necessary to do some kind of testing at least 
on a computer. For this purpose a program has been developed, which simulates the 
regulator in all detail. For the telescope a time constant TS is assumed according 
to the differential equation: 
 

     𝑇𝑆  ∙  𝜕𝜕(𝑡)
𝜕𝜕

+ 𝑉(𝑡)  =   𝐷𝑅(𝑡)        (12) 
 

DR(t) is the regulator amplifier output as given by equ.(11). This simulates the 
time delay of the response of the motors. VR(t) is calculated according to the 
algorithm as described above. For the movement of the telescope the solution of 
this differential equation is integrated, as long as the hardware limits AM and VM 
are not reached. The nod time of tNod = 2.89 sec for a 1 degree nod is defined as 
the time, where the desired value of 1 degree is reached the first time (see 
Fig.2). It is practically identical with the value found using equ.(3), which gives 
tNod = 2.91 sec using AM = 0.5°/sec² and DM = o.45°/sec². (If a theoretical 
deceleration of 0.5°/sec2 is used, one finds a nod time of 2.82 sec.) It is 
obvious, that there is almost zero time wasted, although the maximum deceleration 
used is 0.45°/sec² only. Fig.2 shows the difference between actual and planned 
position. By the way, in case of longer delay of position readings, as is normal 
for satellite applications for example, the nod time is slightly prolonged, because 
the deceleration phase cannot be controlled that precisely as it is obviously 
necessary. The longer the delay, the less reliable the position and velocity 
predictions become. 
 



 

 
 
 
 
 
 
 
 
Fig.1: Simulation of a 1 Degree nod. The 

assumed acceleration AM was 
0.5°/sec2 and the maximum 
deceleration was 0.45°/sec2. The 
nod movement starts at t=0. 

 

 
 
 
 
 
 
 
Fig.2: Simulation of a 1 Degree nod. 

Shown is the difference between 
target and actual position. During 
deceleration the error is relatively 
large at the beginning, but the final 
position is found with high 
accuracy.  

 

 
 
 
 
 
 
 
 
 
Fig.3: Difference of actual and target 
           velocity during 1 degree nod 

 



 
 
        Gain control 
 
 
During the simulations as well as on Gornergrat, a significant “trembling” of the 
system can occur even after having reached the final position. This is caused due 
to the fact, that the assumed acceleration or deceleration is not valid with normal 
settings of the proportional gain. In principle such oscillations would not hurt, 
but the motors are running under constant maximum current which switches rapidly in 
direction. This is certainly not good for the gears involved, and is not acceptable 
for a satellite system because of the electrical power constraints. Therefore, it 
was investigated, how these oscillations can be stopped. A very simple solution was 
found, by changing the regulator gain when having reached the desired position. In 
that instant, where the sign of the velocity changes during the nod, it is clear 
that the position has been found and an almost negligible time period is needed 
only for final settling. In the simulation software the gain of the proportional 
amplifier as derived from equ.(10) is set to zero at the instant the velocity 
changes sign, while the gain of the integrator remains unchanged. It is set back to 
the normal value in case the integrator output exceeds a rather small, but 
preselected value. This eliminates the unfavorable trembling. Some trembling is 
seen in Fig.3 at the beginning of the deceleration phase of the nod. With time it 
diminishes once the movement is coming closer to the final position. After turn-off 
of the proportional amplifier it disappears completely. The rather slow oscillation 
seen after this is due to the system time constant of 0.3 sec assumed for the 
calculation. It is rather remarkable that the overshoot above the 1 degrees 
position is less than 3 arcseconds only (see Fig.2). This is only a very small 
fraction of a typical beamwidth of a radio telescope and therefore insignificant.  
 

Usually, when simulating regulator systems, it is essential that the impact of 
noise is also investigated. For this some noise based on random numbers was 
inserted into the servo loop and the possible changes on the regulator performance 
were watched. As it turned out, the regulator system is not very sensitive to 
noise, but the deceleration must be chosen slightly lower than without noise. This 
is understandable because the regulator must try to compensate for the noise 
fluctuations while decelerating near the limits set to the hardware. In order to do 
this some more headroom is needed for the deceleration in use. 
 
 
 
        Conclusions 
 
 
By means of computer simulation it is established, that a servo loop can be 
operated for a telescope, which guarantees a minimum nod time under all 
circumstances. For this four measures are needed: 
 

1.) The velocity must be controlled with a "sawtooth" input. All input data to the 
regulator must be modified according to the algorithms given by equs.(7) and (10). 
 

2.) The deceleration must be done with a slightly lower value, than the hardware 
would allow at maximum. This moves the settling time interval into the deceleration 
period. In consequence there is almost no additional settling time needed 
afterwards. 
 

3.) Less frequent position readings require, that the true position and velocity 
are extrapolated to the actual time by using equs.(9) and (8). This overcomes the 
difficulty of time delay in the system. The total bandwidth of the servo loop can 
therefore be made much higher than without this method. 
 

4.) The gain of the regulator amplifier must be controlled in a way, which avoids 
"steady state" oscillations. This can be realized by turning off the proportional 
gain once the system has reached the desired position. 
 

All four measures together show excellent performance in a computer simulation. It 
is found, that under assumptions as they might be typical for a satellite like 
SWAS, the actual nod time is not more than about 0.2 seconds longer than the 



minimum theoretical time needed. It is almost independent on the actual parameters 
like time constant or time delay, and, most remarkably, even on nod amplitude! This 
is also true, in case condition 4.) is not fulfilled. 
 

As a recommendation I would like to say, that all measures should be taken to 
improve the nodding speed of SWAS, because the nodding speed determines the 
efficiency of the use of the precious observing time. This is not only the rational 
for the application of the filter algorithm presented here, but it is also a strong 
argument to make the time period of position readings on SWAS as short as possible. 
Another problem might be to decide, what is really controlled by the regulator. For 
the Gornergrat telescope it is the speed of the motors which is in fact controlled 
by the servo loop. For SWAS it might be the acceleration, because the current set 
by the controller determines the change of speed and not the speed of the wheels 
itself (at least I believe so). In any case it is not the position, the system can 
regulate directly, thus the servo loop must be designed accordingly. 
 
 
 
        Note added for groundbased telescopes 
 
 
Usually, there is an additional problem showing up, which is typical for all such 
regulators, that is a drag error arising from the requirement to follow a source at 
some speed. Normally it is almost impossible to overcome this drag problem, but a 
modification of equ.(11) has been found, which might be useful. If one modifies 
equ.(11) to 
 

     𝐷𝑅(𝑡)   =   𝐺𝑉𝑉𝑉 ∙ 𝑉𝑆  +  𝐺𝑃𝑃𝑃𝑃 ∙ [𝑉𝑅(𝑡)− 𝑉(𝑡)]  +  𝐺𝐼𝐼𝐼 ∙ [𝑋𝑅(𝑡)− 𝑋(𝑡)]  ,  (11) 
 

an additional offset is generated, which causes the two terms in the brackets to 
become zero in equilibrium. This means, that the additional term VS takes care of 
the needed offset for proper velocity setting. Tests with the software have shown, 
that the drag offset can be made nearly zero. But, for this it must be recognized, 
that the required gain-factor GVel as input to the motors must be well known for 
obtaining exactly the speed VS, and should be determined by experiment. With aging 
hardware it is also very likely that the response changes, thus the calibration has 
to be repeated from time to time. It should also be noted, that the setting of the 
threshold for turning on or off the proportional amplifier gain must be found by 
very careful investigation. 
 
 
 
 
        Additional note for use in accelerated systems 
 
 
In case the desired position includes also an acceleration term like 
 

     𝑆(𝑡)   =    𝑆(0) + 𝑉𝑆 ∙ 𝑡 + 𝐴𝑆
2
∙ 𝑡2, and 

 
       𝑉𝑆   =    𝑉(0) +  𝐴𝑆 ∙ 𝑡, 
   
then equs.(7) and (10) must be modified: 
 

     𝑋𝑅(𝑡)  =   𝑆(𝑡) +  [𝑉𝑆(𝑡)−𝑉(𝑡)]2

2∙[𝑉𝑍𝑍∙𝐷𝑀−𝐴𝑆]        (7) 

 
with  𝑉𝑍𝑍   =    𝑆𝑆𝑆𝑆[𝑉𝑆(𝑡)− 𝑉(𝑡)] and 
 
     𝑉𝑅(𝑡)   =    𝑉𝑆(𝑡) + 𝑉𝑍𝑍 ∙  �2 ∙ |[𝑉𝑍𝑍 ∙ 𝐷𝑀 + 𝐴𝑆] ∙ [𝑆(𝑡)−𝑋(𝑡)]|    (10) 
 
with  𝑉𝑍𝑍   =   𝑆𝑆𝑆𝑆[𝑆(𝑡)− 𝑉(𝑡)]  
 
Equ.(11) remains the same as before: 
 



     𝐷𝑅   =    𝐺𝑉𝑉𝑉 ∙ 𝑉𝑆(𝑡) + 𝐺𝑃𝑃𝑃𝑃 ∙ [𝑉𝑅(𝑡)− 𝑉(𝑡)]  +   𝐺𝐼𝐼𝐼 ∙ [𝑋𝑅(𝑡)− 𝑋(𝑡)]   (11) 
 
This might be useful when following the course of satellites or other objects, 
which are not moving with constant angular speed. 
 


