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    Introductory Remarks 
 
The following is a compendium of the results of some investigations, which I wrote down in the past in order to 
better understand the properties of spectrometers I have been working with. In particular, Acousto-Optical-
Spectrometers (AOS) were in the main focus, and it seemed necessary to learn about the properties of AOS 
as well as of other spectrometer types in more detail. It was also essential to deal with problems arising when 
dealing with spectrometer data afterwards. This led to more detailed discussions of errors and the character-
istics of noise, in particular of correlation in data streams and their influence on experimental errors in general. 
The main focus was certainly on the noise as it comes out of the spectrometers, and it turned out, that it can 
be quite tricky to understand the details in full depth. In addition, some of the tasks were also focused on the 
methods of laboratory spectroscopy which are also an issue for a detailed noise discussion. Therefore, my 
feeling is, it might be useful for others to have the following articles available. Some articles repeat the argu-
ments of previous ones or of presentations in literature in order to make it easier to follow the arguments.  
 
 

I. About Correlation 
 

The problem to provide of meaningful estimates of statistical errors in experimental data is one of the most 
neglected tasks in all experimental sciences although it belongs to any experimental result that an error is also 
provided in order to establish some credibility for the presented results. In a lot of cases, this is may not be of 
particular concern, because the signal to noise ratio of the data involved may be high enough not to worry 
about statistics but, on the other hand, the question whether there are systematic errors or not is still some-
thing to take care of. The situation is very particular in radio-astronomical spectroscopy, where the line signals 
observed are typically very weak and the background is huge and rather noisy. But also in experimental la-
boratory physics, the signal to noise ratio is frequently of major concern since the easy experiments are 
mostly already done and the more difficult ones are usually hard to carry out because of marginal signal to 
noise. In all such cases a very detailed analysis of the statistical performance of the instrumentation should be 
undertaken, and for this the nature of the noise should be well understood. In the special case of radio-astro-
nomical instrumentation the use of Allan-variance measurements has proven to be extremely valuable. By 
means of the Allan-variance plot it is easy to distinguish between white noise and low frequency noise or drift 
noise by investigating the slope of the plot. Drift noise means that on shorter time scales, the fluctuations in 
the output of the instrument are strongly correlated so that their impact on the experimental results can be 
greatly reduced just by measuring differences taken within short time intervals. This makes the Allan-variance 
a very good tool to study the impact of correlation in experimental data. 
 

When considering correlation between two different data sets y1(x) and y2(x), one uses the definition of the first 
order correlation function:  
 xxyxyG >+⋅<= ∗ )()()( 21

)1(
12 ττ  

The superscript “*” stands for the conjugate complex value of eventually complex data. In most cases it can 
be neglected. The subscript “x” for the expectation “<>” means that one has to average over the argument “x”, 
it could be the time, a distance or else depending on the problem under consideration.  
When exchanging the argument τ by –τ, the correlation function changes like: 

)()'()'()'()'()()()( )1(
21'12'2121
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while using x’ = x-τ. If we are discussing the output of a simple measuring instrument like a Volt-meter for ex-
ample, the data y are generally real valued and we can drop the conjugate complex indicator. In this case we 
have 
 xxyxyG >+⋅<= )()()( 21

)1(
12 ττ  

 

Mostly, one wants to investigate the “autocorrelation function”: 
 

              𝐺11
(1)  =  < 𝑦1(𝑥) ∙ 𝑦1(𝑥 + 𝜏) >𝑥 

 

It provides important information about the noise characteristics of any system.  
When changing the argument to its negative value then we have: 
 )()( )1(

21
)1(

12 ττ GG =−   and  𝐺11
(1)(−𝜏)  =  𝐺11

(1)(𝜏)  
It indicates that the auto-correlation function of real valued data is always symmetric with respect to the argu-
ment.  
 



4 
 

One should distinguish between noisy data, which are mostly real valued and amplitudes of optical fields for 
example, which are typically complex. If we have a data set taken as a sequence in time “t” from a standard 
instrument, the correlation function is real valued and symmetric in time. A Fourier-Transform-Spectrometer 
(FTS) provides the first order auto-correlation function of the incident electromagnetic field as a function of 
optical delay τ = c·Δx with Δx the optical path-length difference between the two arms of the spectrometer. In 
principal, we therefore should get now a complex auto-correlation function G11(1)(τ), which one should deter-
mine for both, negative and positive values. But, since we have G11(1)(-τ) = G11(1)(τ)*, we still would need only 
the data for non-negative values of τ. However, since we are measuring the power of the interferometer out-
put, we get only real data, which are representing the so called “visibility function” of the spectrometer. In prin-
ciple, one can also measure the “Sin-“ and “Cos-“ visibility just by using two outputs of the two-beam interfer-
ometer, which is equivalent to the measurement of the complex correlation function. It might be essential to 
determine it for both negative and positive values of τ  in order to take care of the inherent phase-shifts within 
the two-beam interferometer. 
 
 
    How to describe correlation of experimental data 
 

Correlation between different data means that the statistical behavior of the data is partially identical. At full 
correlation all statistical fluctuations are the same for all data, and without correlation the statistical fluctua-
tions are completely independent from each other. The usual way to describe correlation is done by the defi-
nition of the first order correlation function G12

(1)(τ) (see above). Data sets of arbitrary length are certainly not 
available so that the true expectation <> cannot be determined. Instead, one has to deal with finite data sets, 
and one needs modified procedures to derive knowledge of the true correlation function. Frequently, as men-
tioned above, the auto-correlation function is considered, which is calculated while both data sets {y1} and {y2} 
are identical.  
 

 𝐺11
(1)(𝜏)  =  < 𝑦1(𝑡) ∙ 𝑦1(𝑡 + 𝜏) >𝑡   =  < 𝑦1(𝑡 + 𝜏) ∙ 𝑦1(𝑡) >𝑡 

 

The value of G11
(1) at τ = 0 is then: 
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At extremely long delay τ all statistical correlation should disappear for any signal with random behavior. We 
can separate the mean value of yi(t) and its fluctuations dyi(t): 
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since    0)()()( 211 =><=><=>+< ttt tdytdytdy τ . 
If τ is supposed to be very large, the fluctuations are not correlated, i.e. the product of both is zero on aver-
age, and we have then:  

0)()()()( 2121 =>+<⋅><=>+⋅< ttt tdytdytdytdy ττ  
Thus we have: 
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The variance of the statistical distribution of one data set is then described by 
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2
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We can simplify things, when removing the mean value from the data. Then we rewrite: 
 

tttt tdytdytytytytyG >+⋅<=>>+<−+⋅><−<= )()())()(())()(()( 212211
)1(

12 ττττ  

and        
 

tttt tdytdytytytytyG >+⋅<=>>+<−+⋅><−<= )()())()(())()(()( 111111
)1(

11 ττττ  
 

The variance of a data set is then given by 
2,1),0()()( )1(2 ==>⋅<= iGtdytdy iitiiiσ  
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The correlation function is an important quantity in systems like Michelson Interferometers, Array-Antennas, 
etc.. The correlated signal from two telescopes contains all the available (!) information about the spatial dis-
tribution of the observed sources.  
 

The cross-correlation between data sets is not often used, but sometimes it is practical to determine the sta-
tistical similarity of data sets of two real time spectrometers. For example, it might be necessary to determine 
the relative frequency calibration. If both spectrometers have taken data simultaneously, and if the measured 
signal was just pure white noise (i.e. it is identical for both spectrometers), then the cross-correlation will be-
come maximum if the frequency shift between the two spectra is zero. If the frequency separation between 
the frequency pixels of the spectrometers is not identical, then the correlation becomes strongly degraded but 
will not disappear. It might be helpful to make the frequency separation of the pixels of both spectrometers 
identical as much as possible. This can be done with a proper resampling procedure (see below). Since the 
simultaneous sampling with both spectrometers guarantees that all noise fluctuations are identical, one can 
expect that the cross-correlation becomes large. Such procedures might be useful for the relative calibration 
of Digital Fourier Transform Spectrometers, Auto-Correlators, Filter-Banks or Acousto-Optical Spectrometers, 
which might not have an extremely well known frequency calibration.  
 
 
    White Noise 
 

Before we start to investigate the various possible noise characteristics we should first determine how we un-
derstand what is called “white noise”. If all data points of a set of data are statistically independent from each 
other, we consider the data set as representing white noise. There exists no possibility to describe a data 
stream representing white noise analytically! It can only be characterized by a correlation function like a Dirac 
Delta-function δ(τ): 

)()( 0
)1(

11 τδτ ⋅Γ=G  
Γ0 describes the power, better the square of the amplitude of the white noise fluctuations. The word “white” 
reflects the assumption that the spectral power density, i.e. the power found at any frequency is constant and 
identical at all frequencies. The Fourier-transform of a Delta-function function shows this behavior. The func-
tion diverges at τ = 0, which surely cannot happen in practice. Therefore, in reality we have to consider “band-
limited” white noise, which says that the noise fluctuations do not have frequency components at arbitrary high 
frequencies. The Delta-function is then understood as a “spiky” function of finite width and with finite maxi-
mum, which is determined by the maximum frequency visible in the noise. It may be described for example by 
a simple box of very small width δ, a Sinc- or a Sinc2-function like: 

 
τπ

ττπτδ
⋅
⋅

→
)/2sin()( 0    or   2

00

0
2

)/(2
)/2(sin)(

ττπτ
ττπτδ

⋅⋅
⋅

→    with τ0 very small. 

Its value at τ = 0 is now equal to 2/τ0, while the width Δτ is equal to τ0/2 (according to the “Rayleigh-criterion”). 
The second expression has the advantage that it is non-negative everywhere, so that it avoids anti-correla-
tion. Negative values of the correlation function represent “anti-correlation”. It can be illustrated by considering 
an accidental movement of the content of one data point in one direction; the value of the neighboured data 
point would preferably move in the opposite direction. (In case of normal or positive correlation the opposite 
would be more likely.) The expressions keep the value of the correlation function finite at τ=0, but remains nar-
row with a small time constant τ0. Still, the integral over τ is equal to unity. Other replacements for the Dirac 
Delta-function like a Gaussian or a Lorentzian are also possible. 

 })/(exp{1)( 2
0

0
ττπ

τ
τδ ⋅−⋅→  ,   

2
0

2
0)(
ττ
πττδ
+

→  with very small τ0  

Frequently, a normalized correlation function is used, which is defined by: 
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t

tyty
tytyg

><⋅><

>+⋅<
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)()()(

2
2

2
1

21)1(
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t

t
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1
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Using this definition, the value of g11
(1) becomes automatically “1” at zero. The value of g12

(1)(0) on the other 
hand stands for the relative amount of correlation between the two data sets. When considering noise only it 
is again reasonable to subtract the mean from all data which modifies the expressions to 

tt

t

tdytdy
tdytdyg

><⋅><

>+⋅<
=
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)()()(

2
2

2
1
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t

t
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>+⋅<
=
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)()()( 2

1

11)1(
11

ττ  

(In the following we mostly drop the subscript argument “t” to simplify things.)   
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In reality, it is common that data adjacent in time are partly correlated due to inevitable time constants of the 
system. In this case we can determine the auto-correlation function by means of one simple parameter τs, 
which influences the data like 

                   ∫
∞−

⋅−−⋅⋅=
t

s dttttxty
s

'}/)'(exp{)'()( 1 ττ  

The input x(t), which we assume as white noise, is the signal without the influence of the filter. We can easily 
calculate the output correlation function with: 
 

      𝐺(𝜏)  =  < 𝑦(𝑡) ∙ 𝑦(𝑡 + 𝜏) >  =  <
1
𝜏𝑠

2   ∙ � � 𝑥(𝑡′) ∙ 𝑥(𝑡") ∙ exp {-(t-t')/τs} ∙ exp {-(t+τ-t")/𝜏𝑠} ∙ 𝑑𝑡′ ∙ 𝑑𝑡"
𝑡+𝜏

−∞

𝑡

−∞

>   =  

 

                =    
1
𝜏𝑠

2   ∙ � � < 𝑥(𝑡′) ∙ 𝑥(𝑡")> ∙ exp {-(t-t')/τs} ∙ exp {-(t+τ-t")/𝜏𝑠} ∙ 𝑑𝑡′ ∙ 𝑑𝑡"
𝑡+𝜏

−∞

𝑡

−∞

  = 

                =    
1
𝜏𝑠

2   ∙ � � 𝛤0 ∙ δ(t'-t") ∙ exp {-(t-t')/τs} ∙ exp {-(t+τ-t")/𝜏𝑠} ∙ 𝑑𝑡′ ∙ 𝑑𝑡"
𝑡+𝜏

−∞

𝑡

−∞

  =    
𝛤0

2 ∙ 𝜏𝑠
∙ exp {−

|𝜏|
𝜏𝑠

} 

 

The normalized correlation function becomes:   }exp{)( sg τττ −= . 
 

If the data are sampled at times τ = τk = k·τ0  then we can rewrite: 
 

}exp{}exp{)( 0 sskkk kgg τττττ ⋅−=−==    with   k = 0,±1,±2,…  [1] 
 

Thus we have found the correlation at the presence of time constants, which are usually inevitable 
 

It should be mentioned that higher order correlations are also defined in literature like for example (see e.g. in 
Loudon1): 
                𝐺1234  =  < 𝑦1(𝑡 + 𝜏1) ∙ 𝑦2(𝑡 + 𝜏2) ∙ 𝑦3(𝑡 + 𝜏3) ∙ 𝑦4(𝑡 + 𝜏4) > 
 

This function is useful when describing the interference of many field amplitudes (in this case 4) in optical 
systems like a multi mirror telescope for example. It then describes the effect of the combination of all different 
optical fields in dependence of the different delay time τi. If they are all made equal, one “sees” the ideal im-
age which is equivalent to the image of a large perfect telescope, which has openings in the telescope aper-
ture at the places where the real telescopes are located. This is a rather difficult undertaking, since one needs 
optical delay lines for each telescope in order to compensate for the different path-lengths τi simultaneously. 
In reality one usually combines only pairs of telescopes and calculates the correlation of each pair individually. 
Higher order correlation is then neglected. 
 
 
    “Real” data sets 
 

During a real experiment the data do not appear as continuous functions, but instead, they are a finite data set 
of discrete data points. Thus the above definitions need a refinement to deal with such data. We assume that 
we have a data set of N data, all taken at different time, say t = n∙τ0 (n=1,2,…). The expectations <> are now 
replaced by averages of a sum, e.g. the correlation between two data sets “1” and “2” should be calculated 
now by: 
 

 ,)()(1)(
1

21
)1(

12 ∑
−

=

+⋅
−

=
kN

n
knyny

kN
kG  

 

The arguments “n” refer to the different times the data have been collected. They can also mean the pixel 
number of the output of a spectrometer for example.  
 

In most cases it is necessary to subtract the mean of the data with: 
 

              𝑑𝑦𝑖(𝑛)  =   𝑦𝑖(𝑛) −  
1
𝑁

∙ � 𝑦𝑖(𝑚),   𝑖 = 1,2
𝑁

𝑚=1

   

                   𝐺12
(1)  =   

1
𝑁 − 𝑘

∙ � 𝑑𝑦1(𝑛) ∙ 𝑑𝑦2(𝑛 + 𝑘)
𝑁−𝑘

𝑛=1

     and     𝐺11
(1)  =   

1
𝑁 − 𝑘

∙ � 𝑑𝑦1(𝑛) ∙ 𝑑𝑦1(𝑛 + 𝑘)
𝑁−𝑘

𝑛=1

 
 

                                                           
1  Rodney Loudon, The quantum theory of light, Chapter 5; Clarendon Press Oxford (1973) 
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Similar we can write: 
 

         𝑔12
(1)(𝑘)   =   

1
𝑁−𝑘 ∙ � 𝑑𝑦1(𝑛) ∙ 𝑑𝑦2(𝑛 + 𝑘)𝑁−𝑘

𝑛=1

� 1
𝑁−𝑘∙� 𝑑𝑑1

2(𝑛)𝑁−𝑘
𝑛=1 ∙ 1

𝑁−𝑘∙� 𝑑𝑑2
2(𝑛)𝑁

𝑛=𝑘+1

     and    𝑔11
(1)(𝑘)   =   

1
𝑁−𝑘 ∙ � 𝑑𝑦1(𝑛) ∙ 𝑑𝑦1(𝑛 + 𝑘)𝑁−𝑘

𝑛=1

� 1
𝑁−𝑘∙� 𝑑𝑑1

2(𝑛)𝑁−𝑘
𝑛=1 ∙ 1

𝑁−𝑘∙� 𝑑𝑑1
2(𝑛)𝑁

𝑛=𝑘+1

               [2] 

 

 For the variance of a data set we need to subtract the mean of the data, and we have therefore: 
 

                  𝜎𝑑
2   =  < 𝑦2 >  −  < 𝑦 >2   →     

1
𝑁 ∙ � 𝑦2(𝑛) −   �

1
𝑁 ∙ � 𝑦(𝑛)

𝑁

𝑛=1

�

2

   =     
1
𝑁 � 𝑑𝑦2(𝑛)

𝑁

𝑛=1

𝑁

𝑛=1

 
 

One should keep in mind that the expectation <> is not the same as the mean of a finite sum, because one 
will never be able to determine a fully reliable average from a finite sample. This has consequences for the 
error estimates. Using the sums given above it should now not be too complicated to determine a reasonable 
estimate (or expectation) of the correlation within a discrete set of data. 
 
 
     Error estimate of correlated data 
 

If there are contributions to the noise, which are caused by slow processes, i.e. “drifts”, it is clear that this 
should have some effect on the error estimates of the experimental data. Slow drifts are causing correlation 
between data when taken within short time intervals. Frequently, one simple question is to be considered: 
How is the error of a finite data-set with N data samples estimated correctly? For this we start with the calcu-
lation of the expectation value of the variance according to the usual definition: 

 >><−<=><−><= 2222 ][ yyyytrueσ  
For a finite data set with N data we do not know the exact value of the expectation values, therefore the ex-
pression converts into an expectation of an experimental variance  

>⋅−<= ∑
=

2

1

12
exp ][

N

m
mNn yyσ . 

This is not the “true” variance! With the help of the expectation value of each of the yn we can modify this. 

>⋅<−><=>⋅−<= ∑∑
==

2

1

122

1

12
exp ][][

N

m
mNn

N

m
mNn dydydydy    σ  

 with       ><−= nnn yydy  
 

< 𝑑𝑦𝑛
2 > = < 𝑑𝑦2 > =   𝜎𝑡𝑡𝑡𝑡

2  stands for the real error of the data, which we don’t know, since we use a not ex-
act expression for the evaluation of <yn2>. σtrue2 is the same for all N data yn, therefore we can write: 

∑∑

∑∑

= =

==

>⋅<⋅−><=

=>⋅<−><=>⋅<−><=

N

n

N

m
mnN

N

m
mN

N

m
mNn

dydydy

dydydydy

1 1

12

2

1

122

1

122
exp

2

][][

 

σ

 

The expectation <dy2> is the true variance σ2
true of the data, which we want to find. There are N terms in the 

double sum with n = m, which contribute N·<dyn
2>. Thus we can continue: 

∑ ∑∑
= +=

−

−

=
+













>⋅<+>⋅<⋅−⋅−=
1-N

1k

  
N

kn
knn

kN

n
knnNtrueN dydydydy

11

1212
exp 2)1( σσ  

The expectation values <dyn·dyn+k> and <dyn·dyn-k> depend solely on the separation k of the samples and not 
on n. Therefore we can write: 
 

 < 𝑑𝑦𝑛 ∙ 𝑑𝑦𝑛+𝑘 > = < 𝑑𝑦𝑛 ∙ 𝑑𝑦𝑛−𝑘 > = < 𝑑𝑦𝑛
2 >∙ 𝑔𝑘 

 

gk is the first order auto-correlation function of the data set: 

><
>⋅<

=
><⋅><

>⋅<
= ++

222 n

knn

nn

knn
k dy

dydy

dydy

dydyg .  

The expectation should be independent on the suffix n. (By the way, we have shortened the writing of g11
(1)(k) 

to gk to simplify things.)   
    

In total we get now: 
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⋅−⋅−−⋅= ∑
−

=
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1

2
2
exp )1(21

N

k
kN

ktrue gN
N

σσ . 

From this it follows that a correct estimate of the true variance of the data is given by: 
 

∑

∑ ∑

∑
−

=

= =
−

=
− ⋅−⋅−−

⋅−

=

⋅−−

⋅
−

= 1

1

1

2

1

1

1

1
1

2

2
exp2

)1(21

][

)1(1
1 N

k
kN

k

N

n

N

m
mNn

N

k
kN

k
N

true

gN

yy

g
N

N σ
σ    [3] 

 

It describes how the correlation influences the standard deviation of the data. Certainly, we do not have pre-
cise knowledge about the values gk of the correlation function because of insufficient information, but it is 
probably good enough to use values found by the finite sums as given above (Eq.[2]). If one deals with the 
output of a single pixel instrument, it might be sufficient in some cases to determine consider the time 
constant of the system so that the values of gk can be calculated using Eq.[1] above. It is a bit surprising that 
the influence of the correlation seems to reduce with N large, i.e. if N is much larger than the value of k, where 
gk is approaching zero. But it becomes understandable, if one remembers that for small N one does not deal 
with a significant sample of data, so that the fluctuations are not fully covered. For sufficiently large N, or if 
there is no correlation between the data (white noise), the formula leads to the standard expression 
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1
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,                                                                                                     [4] 
  
 

since a few terms in the sum in the denominator don’t count much compared to a large N. The fairly compli-
cated derivation here has the advantage that we do not need any particular assumption about the statistical 
distribution of the data. We just use the definition of the variance as given by the standard definition. (Whether 
or not this definition is reasonable in all cases might be subject for further discussion.) 

The correlation plays only a significant role as long as N is rather small. This is a similar statement that one 
needs to observe much longer than the typical correlation time of the system determines. Nevertheless, for a 
correct estimate of the variance, instead of Eq.[4], one should use Eq.[3]. In case the values of the correlation 
function are well known, this expression provides a much better estimate of the true variance of the statistical 
distribution of the data. For example, if all data are fully correlated so that the values of gk are equal to "1" for 
all k, both, the denominator and the numerator in Eq.[3] become zero. It means that the variance becomes 
undefined! This is quite "natural" since all data are identical in this case, so that a reasonable error estimate 
must be impossible. When neglecting the correlation correction, the variance according to Eq.[4] is clearly 
useless, since the calculated variance becomes now zero. This is particularly important, when estimating the 
radiometric noise seen on the baseline of a spectrum as observed with a real time spectrometer of a 
radiometer system while using only a few pixels of the spectrum for the evaluation of the baseline rms for 
example. 
 
 
    The error of the mean 
 

More interesting is the error of the mean of several data points, since it is usually provided together with the 
result of an experiment. This is a more serious affair, because we need to determine the expected standard 
deviation of the mean of data yn with: 
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with N the number of available data. With the usual definition of the variance 
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we can now determine, how the error of the new data develops. 
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Since σy2 =  gnn =  σtrue2, we have now finally: 
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Neff is the “effective” number of pixels which contribute to the statistics of the mean. Due the correlation one 
has less information available than one expects, because each data point contains a fraction of the noise 
information of the neighboring points. It should be noted that the value of σtrue2 is determined using Eq.[3], as 
found before. In summary, we have now: 
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These results are definitely different from the usual formulas:  
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Clearly, the effective number of available data Neff is practically always smaller than the number of data N. If 
we have all N data fully correlated, Neff becomes unity, and the denominator and the sum in the numerator 
both become zero. Both variances become therefore undefined. The influence of correlation persists even at 
large N. This is important when considering the accuracy of averages in general. It should be noted that the 
simple connection between the variance of the individual data points and the error of the mean is not valid 
anymore (Instead of σN2 = σexp2/N we have now  σN2 = σtrue2/Neff). The result here verifies the trivial expectation 
that we cannot expect a mean with small error, if the data are strongly correlated.  
 
 
    Error of the correlation function 
 

In an experimental situation, it is nearly impossible to derive true results for expectation values since we are 
always confronted with data sets of finite size. The typical assumption is that the data are affected by white 
noise only. In this scenario error estimates become rather simple and are usually given in many publications. 
But in general this might not be correct, since in many cases data are correlated with the consequence that 
one has to deal with non-white noise! It is therefore necessary to introduce other expressions, which can be 
used instead. We assume that we have data equidistant in time (or frequency or else), which are sorted by the 
index n. In total we have N data yn. For the first order correlation function we have then: 
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The index k could mean that the data have been collected with equidistant time intervals τ0 so that τ = τk with 
τk = k·τ0. It also may describe the channel numbers of a real time spectrometer, which are read out at the 
same time. k is then the difference between channel numbers.  
 

The definition above is a bit theoretical because we do not know the true expectation of dyn·dyn+k and the ex-
pectation of yn as well. Therefore one must find a useful approach for finite data sets in order to obtain a rea-
sonable estimate. It is normal practice to replace the expectation by the mean. Thus we write: 
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(Note that the δyn are not identical with the dyn.) The expectation values are here estimated as the means over 
an eventually large number of data. This definition assumes that all data yn of the data set follow the same 
statistics. When using the above definition while dealing with spectrometer data, the mean value 1/(N-k)·Σym 
should be corrected by subtraction of unwanted, but systematic structures in the data set, which are obviously 
not of statistical origin. It is also important to note that the value of this correlation function is "1" for k=0 by 
definition.  
 

Good estimates of the values of the correlation function are usually not available with only one data set of lim-
ited size. In order to get some feeling about the accuracy of the gk we can try to evaluate the expected stand-
ard deviation of the correlation function with the assumption that we consider only the regimes with <gk> = 0, 
i.e. for k very large. The data δyn and δyn+k should be now completely uncorrelated, since the correlation 
should disappear at large time or pixel separation. For an estimate we consider the value of 
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(The error of the variance σ2 is here neglected.) The values of δyn and δyn+k and of δym and δym+k are com-
pletely uncorrelated, since we assume k very large, so that the terms <δyn·δyn+k·δym·δym+k> can only be non-
zero if n=m. (By the way, this is a good example of a higher order correlation function as was mentioned 
above.) In this case we have two statistically independent products <δyn2·δyn+k2> = <δyn2>·<δyn+k2> = (σ2)2. 
Thus we find: 

    
kNkN

kNkg −
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This means that the number of data N must be very large in order to obtain an acceptable error margin. For 
example, the standard deviation is 10% of the maximum (=1) for a data set with 100 data points. This is unac-
ceptable in most cases. Therefore, if possible, one should use several statistically independent data sets in 
order to find a reasonable error estimate while averaging the values of gk. 
 
 
    The role of correlation for a telescope 
 

An optical telescope with one large aperture can be understood as a collector of many correlated signal am-
plitudes. If we subdivide the telescope surface area in N small pieces with signal amplitudes am, then we can 
write for the total signal: 
 

 ∑∑∑∑∑ =>⋅<=><∝
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Gmn is the mutual and not normalized correlation function between the sub-areas of the optics. We describe 
the partial beams by their amplitude and phase: 
 

mi
mm eaa ϕ⋅⋅=  

and we can write:   ><⋅>⋅<=>⋅⋅<= −− )()( nmnm i
nm

i
nmmn eaaeaaG ϕϕϕϕ  

We consider the averages over amplitude and phase as independent because:  (i) the amplitudes are deter-
mined only by the illumination (from a point-like source and for a telescope of relatively small size) while (ii) 
the phases are determined by the optical path-lengths within the telescope optics. (If atmospheric influence is 
to be taken into account, one could consider it as part of the optics of the telescope.) Therefore, correlation 
between amplitudes and phases should not occur. 
 

If we introduce now the relative correlation gmn between the pieces we write: 
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Both may be time-dependent so that │am│  =  │am(t)│ and  φm =  φm(t). The phases φm include also the atmos-
pheric fluctuations which could be dependent on position in the telescope aperture, but, for simplicity reasons, 
we consider here only a smaller telescope or a telescope with adaptive optics. In this case the time-variability 
of all amplitudes │am│ is identical. The same is true for the phases, if we consider an optically stable telescope 
system. If there are no imaging errors or statistical surface variations involved, the phases are all identical. In 
this case we have:    
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and we get the usual formula: 
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This is the performance of a perfect telescope. All amplitudes add coherently and the intensity is therefore the 
square of the sum of the amplitudes. If the amplitudes are all identical (am = a), then we can rewrite 
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On the other hand, in case there is no correlation between the amplitudes an, then we have 
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Again, if the amplitudes │am│ =  │a│ are all identical, then we have: 
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The incoherent superposition of the sub-amplitudes becomes only 1/N times the signal of a fully coherent su-
perposition. This would be the result of a telescope surface with completely random surface variations (ne-
glecting imaging errors). A realistic telescope will lie somewhere in between (see below: “Ruze formula”). At 
the same time the spatial resolution is partly lost, the received power is smeared over a larger image.  
 
 
    The Influence of the Surface Roughness of Mirrors: An application 
 

A particular role plays partial correlation due to the perturbation of the reflected field amplitudes from a rough 
surface. We consider here only the influence of the varying phase differences occurring during the reflection 
from different parts of the mirror. Coarse variations we consider as imaging errors, which we don’t pursue 
here. The statistical imaging errors are in close connection to the quality of the mirror, since a rough surface 
causes scattering of the light and therefore reflection losses of the radiation. Similar, surface roughness on 
lenses has identical consequences. We assume that all phase variations are of purely random nature and we 
consider a statistical distribution of the surface errors t with: 
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“t” stands for the deviation of the real from the ideal surface. The variance, or better the standard deviation 
√σ2, defines the rms value of the surface roughness. Since we investigate the result of the surface roughness 
on the imaging, the contributing phase error becomes twice the surface error t.  
 

We want to know, how the consequences look like in the far-field pattern of the radiation. The degradation is 
immediately visible in the maximum intensity of the signal. We assume an amplitude distribution A of the in-
coming radiation like 
 

 

     mm axA =)(  
at the m-th location within the aperture of the mirror. Then we have in the center of the image for large dis-
tances, z → ∞ (or in the focus of the telescope), an amplitude like 
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The sum extends over the complete surface of the mirror. Together with the surface errors this expression 
changes into 
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The amplitude distribution am becomes modified by the phase errors of the surface. For the center intensity we 
have then: 
          𝐼(0,0, 𝑧)   =   𝐶 ∙< |𝐴(0,0, 𝑧)|2 >  =   𝐶 ∙< � � 𝑏𝑚 ∙ 𝑏𝑛
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The constant C replaces all unimportant factors, which stand for the further details of the imaging. The Gmn 
are the values of the first order correlation function between the amplitudes at the locations m and n. If we 
consider not just single dish optics, but a system of a telescope ensemble, i.e. an interferometer antenna, then 
we might consider the amplitudes am and an just as single valued amplitudes for each antenna (assuming that 
each of the antennas has an ideal surface). The above formula is then the basis for the operation of array 
antennas like the VLA, SMA, ALMA, etc. 
 

When interchanging the indices m and n, one obtains the conjugate complex value of gnm, so that we can write 
now: 

           𝐼(0,0, 𝑧)   =   𝐶 ∙ �� 𝐺𝑚𝑚
𝑚

+ 2 ∙ 𝑅𝑅 �� � 𝐺𝑚𝑛
𝑛<𝑚𝑚

�� 
 

The second part in the brackets explains that the total intensity is not just equal to the sum of the individual 
intensities (ΣGmm). The outcome depends totally on the mutual correlation between the different amplitudes. 
For a point-like source the signal correlation is complete as long as the path lengths for all antennas are iden-
tical. For extended sources this is certainly not the case. In addition, the atmospheric fluctuations play a very 
important role, because they destroy the correlation between the amplitudes at the different positions.  
 

When determining all values of the correlation function Gmn as a function of the phase difference between the 
various antennas a complete image of the sky within the main beam of one single dish can be constructed. 
This requires that the distance between the telescopes is varied, which in parts is already achieved when 
taking advantage of the earth rotation. The values of the correlation function are most easily found when using 
heterodyne receivers. With optical systems like the VLT it is more difficult. 
 

Let us describe the amplitudes as 
 

     𝑏𝑚  =   ⌈𝑎𝑚⌉ ∙ 𝑅2∙𝑖∙𝑘∙𝑡𝑚   
 

An eventual phase of the am we may include in the tm.They stand for the optical path length at locations m. We 
have now for the value of the correlation function: 
 

 𝐺𝑚𝑛  =   |𝑎𝑚| ∙ |𝑎𝑛| ∙ 𝑅2𝑖∙𝑘∙(𝑡𝑚−𝑡𝑛) 
 

and the intensity becomes now: 
 

         𝐼(0,0, 𝑧)   =   𝐶 ∙ �� 𝐺𝑚𝑚
𝑚

 +   2 ∙ � � 𝐺𝑚𝑛
𝑀𝑀𝑥 . cos[2 ∙ 𝑘 ∙ (𝑡𝑚 − 𝑡𝑛)]

𝑛<𝑚𝑚

� ,    𝐺𝑚𝑛
𝑀𝑀𝑥  =   |𝑎𝑚| ∙ |𝑎𝑛| 

 

This expression becomes maximum for all path length differences equal to zero. Different positions on sky 
require new differences in the setting of the path length corrections between the telescopes. Thus, one can 
construct a full map of the brightness distribution on sky from a single series of measurements. By the way, 
this is more or less identical with the situation of a single dish telescope, where one gets a complete image in 
the focal plane of the optics. 
 

Let us come back to the situation with a single dish antenna.  We had: 
 

               𝐼(0,0, 𝑧)  =   𝐶 ∙< ⌈𝐴(0,0, 𝑧)⌉2 >  =   𝐶 ∙ 〈� �⌈𝑎𝑚⌉ ∙ ⌈𝑎𝑛⌉ ∙ 𝑅2∙𝑖∙𝑘∙(𝑡𝑚−𝑡𝑛)〉𝑡 
 

We have to average over all path lengths t according to the above given probability distribution. We consider a 
fully random distribution of all tm. Thus we can also assume that the differences tm-tn are also randomly dis-
tributed according to a Gaussian probability function. When building the average it is now important that the 
distribution of the illumination does not influence the statistics. Thus, when picking a certain position m with 
path length tm, the statistics of the differences to this position is again the same as that of another position n 
so that the averaging can be done independently on the illumination function. This assumption is true for a 
Gaussian illumination function for example. Then we can rewrite 
 

             𝐼(0,0, 𝑧)   =   𝐶 ∙ 〈� �⌈𝑎𝑚⌉ ∙ ⌈𝑎𝑛⌉ ∙ 𝑅2∙𝑖∙𝑘∙(𝑡𝑚−𝑡𝑛)〉𝑡   =   𝐶 ∙ � �⌈𝑎𝑚⌉ ∙ ⌈𝑎𝑛⌉ ∙ 〈𝑅2∙𝑖∙𝑘∙(𝑡𝑚−𝑡𝑛)〉𝑡   = 
 

                               ⟹    𝐶 ∙ � �⌈𝑎𝑚⌉ ∙ ⌈𝑎𝑛⌉ ∙  � 𝑑(𝛿𝑡) ∙ 𝑅2∙𝑖∙𝑘∙𝛿𝑡 ∙ 𝑤(𝛿𝑡)
∞

−∞

 

 

δt stands for the differences tm-tn. We consider the variations of am locally as zero, i.e. the illumination should 
be a slowly varying function across the aperture of the telescope like one would have with a plane wave 
radiation field.  
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Because of the doubled contribution of the surface errors the probability function of the differences tm-tn is 
given by: 
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Assuming that the │an│are all equal we need to evaluate now the average over all path length differences. 
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The integral over the Sin-function is zero, because it is an asymmetrical function. Thus we find finally: 
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while using    λπ /2 ⋅=k . This formula is well known in the literature as “Ruze-formula”.  
 

We therefore get for the expectation of the intensity at large distance z: 
 

        𝐼(0,0, 𝑧)   =   𝐶 ∙ ∑ ∑|𝑎𝑚| ∙ |𝑎𝑛| ∙ 𝑅𝑥𝑒 �− �4𝜋∙𝜎
𝜆

�
2

�   =    𝐼(0,0, 𝑧)𝑀𝑀𝑥 ∙ 𝑅𝑥𝑒 �− �4𝜋∙𝜎
𝜆

�
2

�  
 

The Ruze-factor represents therefore a direct measure of the losses, which are caused by surface roughness 
of the mirror. The formula is particularly important for radio-telescopes, because it determines the uppermost 
frequency, where the telescope can be used efficiently. At the same time it should also be a good tool to 
identify the usefulness of optical mirrors as laser mirrors for example. But, contrary to the general opinion that 
the accuracy of a mirror surface must not be better than λ/20 in order to avoid losses due to the surface 
quality, the Ruze-formula predicts that such mirror provides only 67% efficiency! The missing 33% become 
scattered into all directions, as is usually well visible, at least in parts. But, apparently it needs a surface 
quality of λ/100 for an efficiency of 98.4%! This is not quite in agreement with the experience with optical 
mirrors, and one can conclude that the simple picture is not fully valid for such optics. It might be possible that 
the micro-roughness of such mirrors is much better, so that unfavorable losses are not that high in reality. 
 
 
    The Auto-Correlation Function of various noise spectra 
 

As is obvious from the discussion before, it is not only white noise which is of importance for the statistics of 
experimental data. An example we have seen above, if a time constant or some pre-integration is involved 
(see Eq.[1]). In general we have to consider all kinds of noise spectra, which have strong dependence on the 
frequency one is observing at. Noise with a stronger relevance of low frequency components we call “drift-
noise”. Such noise is usually described by its spectral power distribution S(f). In this chapter we consider the 
“auto-correlation function” G(τ) of such noise. The noise power spectrum is the Fourier transform of the first 
order auto-correlation function: 

        ∫∫
∞∞
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)2cos()(2)2exp()()( ττπτττπτ dfGdifGfS     and 
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The simplified definition for non-negative frequencies is useful for our discussion, because the signal output of 
most instruments is assumed to be real. Consequently, the correlation function G(τ) has to be real valued and 
symmetric in time (G(-τ) = G(τ)). From this we have also that S(-f) = S(f). (Note that we have simplified: 
G(τ) = G11(1)(τ).) 
 

It should be understood that we talk here about the “noise power spectrum” and not about the plain Fourier 
transform of a sequence of data. The noise power spectrum is found as the sum of the square of the Sin- and 
the Cos-Fourier transforms of the data. But it is much more adequate to determine the frequency distribution 
of the noise power by calculating the Fourier transform of the auto-correlation function of the data. Neverthe-
less, the relation between the power spectrum and the spectrum of the data can be found by means of the 
complex Fourier transform 

 ∫
∞

∞−

⋅−⋅= dttiftafA }2exp{)()( π     and    ∫
∞

∞−

⋅⋅= dftiffAta }2exp{)()( π  
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a(t) describes the data stream as a function of time and A(f) is the Fourier-transform of a(t). The power spec-
trum is then given by: 
 2)()( fAfS =   
Only if the data stream a(t) is symmetric, i.e. if a(-t) = a(t), then the simplified expression above applies. At 
the same time A(f) becomes real valued. In general the auto-correlation function G(τ) is real, so that we are 
allowed to use just the non-negative frequency range. (We prefer to use the description in frequencies f in-
stead of ω, because it avoids all additional and annoying factors in front of the integrals.)   
 

The noise power spectrum is constant for all frequencies in case of white noise, but it reaches zero for large 
frequencies f in case of drift noise. Often a power law like 1/f α is considered, and, in particular, the conse-
quences of 1/f -noise (α = 1: flicker noise) are widely discussed. In any case, S(f) should approach zero at a 
finite frequency, since any existing instrumentation has definitely a nonzero time constant. Thus, an upper cut-
off frequency fh for S(f) can be defined, at least for white noise (→ band limited white noise). 
 

For the following we make a few additional assumptions, which are at least "reasonable" in most cases. 
 

1.) If the signal output a(t) of an instrument is measured continuously, the measured data points are all well 
confined within a statistical distribution with existing mean and variance. This is an essential assumption, 
because any instrumentation which does not obey this requirement would never provide reasonable data 
from the experiment. We can therefore evaluate the variance σ2 as a finite and non-negative quantity: 

0)()0()()(])()([ 2222 ≥∞−=><−><=>><−<= GGtatatataσ  
On the other hand we have from the definition of the Fourier Transform from above: 

           ∫
∞

⋅⋅=
0

)(2)0( dffSG  

G(0) is proportional to the total power contained in the noise spectrum. The power must be finite, because 
an instrument generating infinite power does not exist! In consequence, G(∞) is also finite (see also be-
low). Thus we assume for example, that the signal output does not drift in one direction indefinitely, but 
fluctuates about an average value with a (eventually) rather long time constant. 

 

2.)  G(τ) decreases monotonically for all τ ≥ 0. 
For two independent measurements of the signal, taken at different times, the result of the second meas-
urement becomes statistically more and more independent on the first with increasing time delay between 
the two measurements. The signals become completely uncorrelated in case the samples are taken with 
very large time separation. This behaviour is typical for low frequency noise, which should be called here 
"drift noise with random statistics". For any scientific instrumentation this is how the drifts usually appear. 
(By the way, this definition rules out any interference in the sense that an increase of correlation with time 
is not allowed, as it would be possible with periodic perturbations for example.) 

 

3.)  G(τ) is finite for all τ. 
This is a natural requirement when following the assumptions 1.) and 2.). It prohibits the occurrence of a 
singularity, in particular a singularity at τ = 0 as a Dirac Delta function would imply for example. Therefore 
the assumption of white noise means in reality, that G(τ) behaves mathematically like a Delta-function in 
case the integration interval about zero is not too small. This is e.g. valid for band-limited white noise. 

 

4.)  G(τ) approaches a minimum value "sufficiently fast" for large τ. 
If we neglect any non-zero average signal, we can assume that G(τ→∞) = 0. It describes the situation of 
the noise alone, above which the signal is finally seen. 

 

5.)  G(τ) is an analytical function for all τ. 
Thus, G(τ) can be expanded into a series expansion about any τ on the real axis. This assumption is es-
sential for the validity of the Fourier transforms given above for all times τ and frequencies f respectively. 
In consequence there are no sudden jumps of G(τ) at any τ, but instead it is a rather smooth function. This 
is nothing unusual in a real experiment, but it does not really include all the properties of a digitized signal 
for example. 

 

One consequence from the assumptions before is that G(τ) ≥ 0 for any τ (there is no anti-correlation). For the 
validity of the Fourier transform formulas from above it must be assumed (and is also reasonable) that: 

        ττττ dGdG ⋅=⋅∫ ∫
∞ ∞

0 0

)()(    exists (or better, is finite). 

Thus we have for the value of the Fourier transform S(f) at zero frequency: 
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     ∫
∞

⋅⋅=
0

)(2)0( ττ dGS    is finite. 

The expression "G(τ) approaches zero sufficiently fast for large τ" means, that the integral over G(τ) has to 
stay finite. Therefore we can conclude, that G(τ) must go to zero faster than 1/τ for sufficiently large τ. 
 

If the noise is analyzed by a power law of the spectral distribution S(f) like 
 

          α
α

f
SfS =)( , 

one finds for the correlation function at zero delay: 
 

                  𝐺(0)  =   2 ∙ ∫ 𝑆(𝑓) ∙ 𝑑𝑓   →    2 ∙ ∫ 𝑆(𝑓) ∙ 𝑑𝑓𝑓ℎ
𝑓𝑙

∞
0   finite. 

 

Obviously, one needs to introduce a finite upper cut-off frequency fh for all α ≤ 1, otherwise the G(0) would 
become infinite. (This is particularly important for white noise with α = 0.) On the other hand, it is also obvious 
that a lower cut-off frequency is needed for all α ≥ 1. Only for α = 1, both limits in frequency are needed. An 
infinite power is impossible for any real instrument, and it means, that in reality there exists no noise power 
spectrum with α ≥ 1 which behaves like 1/fα at very low frequencies. Instead, the noise power spectrum may 
be assumed as constant for f < fl for example. This is also important for the treatment of so called "flicker" 
noise with α = 1.  
 

From the assumptions above it can also be concluded that the noise power spectrum S(f) has no singularities 
at any frequency, that it is a "smooth" function, positive valued, and going to zero for very high frequencies. In 
particular, since G(0) is finite, S(f) must also go to zero faster than 1/f for large f. This implies that flicker noise 
with pure 1/f characteristics at both ends of the spectrum cannot exist in reality.  
 

In order to verify that the assumptions for the correlation function are also valid for spectral power laws as 
they are typically considered in the literature, the corresponding correlation functions of 1/fα spectra are cal-
culated below. But it should be pointed out that the usage of such spectral power spectra is not really suitable 
in cases, where the actual spectral distribution might be a mixture of a large number of different power laws. 
The problems arise due to the fact that such power laws do not represent an orthogonal basis-set for a con-
venient and complete description of the spectral distribution.  
 

For convenience we assume now a power law of the noise spectrum for α > 0 like 
 

             𝑆𝛼(𝑓)  =   �

𝑆𝛼(0)                            0 ≤ 𝑓 < 𝑓𝑙

𝑆𝛼(0) ∙  1 𝑓𝛼−1 𝑓ℎ
𝛼⁄⁄

1 𝑓𝑙
𝛼⁄ −1 𝑓ℎ

𝛼⁄
    𝑓𝑙  ≤ 𝑓 < 𝑓ℎ

0                                             𝑓 ≥ 𝑓ℎ

 

 

fh is the upper cut-off frequency above which the noise power spectrum is assumed to be zero. The constant 
term 1/fhα is subtracted in order to avoid any sudden jump of the spectrum at frequency fh. fl is the lower cut-
off frequency, which must be introduced to avoid a singularity at f=0. The sudden change of the slope of the 
spectral curve at the fl seems to be rather rough, but one can show that the arguments below are still valid 
with a smoother behaviour when approaching zero frequency.  
 

For α = 0 we use: 

     




≥
<≤

=
h

h

ff
ffS

fS
0

0)0(
)( 0

α  

α < 0 we do not consider, because it would violate assumption 2.) above. 
 

The coefficient Sα(0) may be replaced by the total power contained in the noise with the assumed frequency 
dependence. This is possible because the power always stays finite for spectra as described above. The 
power Pα which is contained in the spectrum Sα(f) is proportional to the value of the correlation function Gα(τ ) 
at time τ  = 0. The correlation function Gα(τ ) describes only that portion of the total correlation function, which 
is related to the assumed spectral distribution. 

    ∫
∞

⋅⋅==∝
0

)(2)0( dffSGP ααα τ  

Therefore we can replace Sα(0) by the power Pα or by the value of the correlation function at τ=0. If we as-
sume for the two cut-off frequencies that fl « fh then we have: 
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Due to the definition of S(f) above it is guaranteed that Gα(0) is finite for all values of α considered here. 
 

We are interested in the correlation function at all applicable times τ  (τ  » fh-1) 

with     ∫
∞

⋅⋅⋅=
0

)2cos()(2)( dfffSG τπτ  

We find then, using asymptotic and series expansions of Confluent Hypergeometric Functions with α > 0 
(α ≠ 2k+1, k = 0, 1, 2, ....) (see e.g. Footnote 2) with 1/fh « τ  « 1/fl : 
 
 

      𝐺𝛼(𝜏)  =   2 ∙ 𝑆𝛼(0) ∙ 𝑓𝑙 ∙  ��
(−1)𝑛

(2𝑛 + 1)!
∙

𝛼
𝛼 − 2𝑛 − 1

∙ (2𝜋𝑓𝑙𝜏)2𝑛

𝑛≥0

−  
𝜋 2⁄

sin (𝜈)
∙

(2𝜋𝑓𝑙𝜏)𝛼−1

𝛤(𝛼)
� 

 
 

ν = (α-1)·π/2 and Γ(x) is the Gamma-function. The leading and non-constant terms are therefore proportional 
to τ2 for any α larger than 3, and proportional to τα-1 for small α (0 < α < 3). For α within a small interval around 
α = 3 the first term of the sum and the last term with τα-1 compete, and both must be taken into account. Note 
that for α near 2k+1 the singularity of the last term caused by 1/cos(ν) is removed by the corresponding term 
in the sum for n = k. 
 

For α = 2k+1, k = 0, 1, 2, ..., and again for 1/fh « τ « 1/fl we find, using asymptotic and series expansion of Ex-
ponential Integrals 2: 
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with     γ−= ∑
+

=
+
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1
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s
k s

h ,   γ  =  0.577 215 664 9..   Euler's constant. 

For the case of 0 < α < 1 the leading term is shown below. 
 

Only the leading terms of the expansion of the correlation function are of interest. Therefore, while replacing 
Sα(0) by Gα(0) as given above, we can write in first order approximation for 1/fh « τ « 1/fl : 
 

𝐺𝛼(𝜏)  =   𝐺𝛼(0)  ∙   

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 1 −

𝛼 − 1
𝛼 − 3

∙
(2𝜋𝑓𝑙𝜏)2

6
                                                        𝛼 > 3,     𝑓ℎ → ∞

1 −  {1.2561 … + 𝑙𝑙𝑔(1 2𝜋𝑓𝑙𝜏⁄ )} ∙
(2𝜋𝑓𝑙𝜏)2

3
             𝛼 = 3,     𝑓ℎ → ∞

1 −  
𝜋 2⁄

𝑠𝑖𝑛[(𝛼 − 1) ∙ 𝜋 2⁄ ] ∙
(2𝜋𝑓𝑙𝜏)𝛼−1

𝛤(𝛼 + 1)                   1 <  𝛼 < 3,     𝑓ℎ → ∞

0.4228 … + log(1/2𝜋𝑓𝑙𝜏)
log (𝑓ℎ 𝑓𝑙)⁄                                                 𝛼 = 1                   

𝜋 2⁄
sin[(1 − 𝛼) ∙ 𝜋 2⁄ ] ∙

1
𝛤(𝛼 + 1) ∙

1
(2𝜋𝑓ℎ𝜏)1−𝛼          0 <  𝛼 < 1,     𝑓𝑙 → 0   

𝑠𝑖𝑛[2𝜋𝑓ℎ𝜏]
2𝜋𝑓ℎ𝜏

     𝑓ℎ 𝑙𝑎𝑙𝑔𝑅�����������������⃗      
𝛿(𝜏)
2𝑓ℎ

                                          𝛼 = 0,     𝑓𝑙 → 0   

                       [7] 

   
 

For values of α near 3 the terms given for α > 3 and for α < 3 must be considered at the same time. Note, that 
for α > 1 the lower cut-off frequency fl is decisive and for α < 1 the higher cut-off frequency fh. For α = 1 we 
need both. Note also that the correlation function of flicker noise has logarithmic behaviour! The correlation 
still decreases with increasing delay, but very slowly. This behaviour is frequently not recognized in literature. 
 

Thus, it is shown that for noise power spectra S(f) ∝ 1/fα the correlation function G(τ) behaves as assumed 

                                                           
2 Handbook of Mathematical Functions, M.Abramowitz and I.A.Stegun, Dover Publications, Inc., New York 
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within first order approximation. In particular, it is a monotonically decreasing function, and it is also evident, 
that G(τ) remains finite for τ → 0. Therefore all conclusions derived are valid for the noise power spectra con-
sidered here.  
 
 
    Generating arbitrary noise power spectra 
 

Sometimes it might be useful to ask, how a data stream with a particular noise power law should look like. For 
white noise this is simple, a good random number generator will do it. But it is a lot more tedious to construct a 
data set with other power law characteristics. Quite often one finds in literature analyses of data by means of 
a straight forward Fourier analysis claiming that one can clearly recognize a 1/f- or flicker-noise behaviour. 
This is rather misleading, since the Fourier-analysis of a data set and the characteristics of the noise power 
law are something completely different. It might be a good exercise, although not of much practical value, to 
construct data sets with statistical behaviour following a given power law. For this one should look for a suita-
ble filter, which is applied to a set of random data representing white noise. If we consider a filter function u(t), 
which is filtering the data of a white noise source, we have for the output of the filter: 

 ∫
∞

∞−

⋅−⋅= ')'()'()( dtttutxty  

Or, in some cases, we have an asymmetric filter function with 

 ∫
∞−

⋅−⋅=
t

dtttutxty ')'()'()(  

The filter function should be normalized so that  

 ∫
∞

∞−

=⋅− 1')'( dtttu  

This guarantees that the mean input is identical with the mean output of the filter. The lower and upper limit of 
the integral may also be finite so that experimental data can be treated as well. In this case we have: 

∫
+

−

⋅−⋅=
at

at

dtttutxty ')'()'()(  

This allows to process finite data sets on-line. Usually we have to deal with discrete data sets. Then we can 
write: 
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or, when preferring a more symmetric expression: 
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The correlation function  
 

 >+⋅<=Γ )()()( ττ txtx  
should now represent white noise as described by a delta function. The resulting new correlation function G(τ) 
of the data y(t) is then: 
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For the last step we have set  t-t1 = x  and  t2-t1 = s.  For the case of white noise this converts into: 

∫
∞

∞−

⋅+⋅⋅Γ= dxxuxuG )()()( 0 ττ  

While knowing the new correlation function G(τ) we can now determine the spectral power distribution of the 
filtered data with 
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 ∫ ∫ ∫∫
∞

∞−
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∞
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⋅−⋅−Γ⋅−+⋅−⋅=⋅−⋅= ττπτττπτ difttttuttudtdtdifGfS }2exp{)()()(}2exp{)()( 12121 2
 

Again, we can substitute now  t – t1 = x,  t2 - t1 = s,  and therefore  t + τ – t2 = x + τ + s. This leads to 
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where we have used that the power spectrum of the input noise is given by 

 ∫
∞

∞−

⋅⋅−⋅Γ= ττπτ diffG }2exp{)()(   and   ∫
∞

∞−

⋅⋅−⋅= dttiftufU }2exp{)()( π . 

G(f) is a real function, since the autocorrelation function Γ(τ) is always symmetric in time for real valued data. 
Therefore we can drop the conjugate complex indicator and have therefore: 
 )()()( 2 fGfUfS ⋅=  
If the input is white noise (Γ(τ) = Γ0·δ(τ)), then the expression is simply: 
 2

0 )()( fUfS ⋅Γ=  
Thus we have, when comparing: 

 ∫ ∫∫
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∞

∞−

∞

∞−

⋅⋅−⋅












⋅+⋅=⋅⋅−⋅= ττπτττπτ difdxxuxudifGfU }2exp{)()(}2exp{)()( 2  

The value of G(f) has to be real, which is guaranteed because Γ(τ) is symmetric in τ. In case u(t) is also 
symmetric in time, U(f) itself becomes real. This means now that we can determine u(t) as the real valued 
Fourier transform of √S(f), if we assume a particular power spectrum S(f) ~ ∣U (f)∣2. When using this we are 
able to simulate any kind of noise power spectrum, when applying such time filter to a white noise data set, as 
can be generated by random number generators. It should be noted that it is not sufficient to just apply a Fou-
rier transformation to a data set and make conclusions about the noise power spectrum itself from this trans-
formation. My impression is that the outcome of such transformation with 1/f-characteristics is frequently 
misinterpreted as 1/f-noise-power spectrum. In reality, it is a 1/f2-noise-power spectrum, when considering 
the above description. Such behaviour is usually found, if a nearly constant drift in time is present. But this 
violates the assumption for the statistical behaviour of such data, because the data set would never be long 
enough to represent the complete statistics of the data set. 
 

The Fourier transform of the filtered data is on the other hand given by transforming the new signal 

 ∫
∞
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⋅−⋅= ')'()'()( dtttutxty  

into the frequency domain. The output signal is the convolution of the input signal and the filter function. Thus, 
the spectral amplitude distribution of the output data is now 
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Thus we have the well-known result that the spectral amplitude distribution of the output of the filter, i.e. the 
convolution of the input signal and the filter function, is given by the product of the amplitude spectrum of the 
input signal and the spectral amplitude distribution of the filter. But this is not the power spectrum! 
 

 )()()( fAfUfA Inout ⋅=  
 

If we take the absolute square of Aout(f), we get the same result as derived before: The power spectrum of a 
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signal is the absolute square of the spectral filter function times the power spectrum of the input. As an exam-
ple, let us first concentrate on an asymmetric exponential filter with 
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This corresponds to the behaviour of a simple RC-filter. When evaluating the Fourier-transform we get: 
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The power spectrum on the other hand is given by the Fourier transform of the correlation function of the fil-
tered white noise: 
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And with white noise input we obtain: 
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δf is the full half width (FWHM) of the spectral distribution (including the negative frequency part!). The expo-
nential filter leads to a 1/f 2 spectral power law, but is finite at f = 0. This corresponds to the absolute square of 
the Fourier-transformed filter function which shows also the 1/f2 behaviour. By the way, the result justifies the 
above assumption of a finite value of S(0), when considering drift noise as the result of a time constant in the 
system for example. It seems that the 1/f2 behaviour is rather common in experimental physics. If the input is 
just white noise, the output spectrum is the product of the input spectral distribution – i.e. a constant for white 
noise – with the filter function. 
 

One simple conclusion can be found from the above mathematics: What happens, if one uses a series of such 
filters? This is now simple to answer, because we can use the convolution theorem iteratively. If we have a 
series of filters, each with its own time constant τn with n = 1,2,…,N, then we can write: 
  )()(...)()()( 22
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If the input is again considered as white noise, we have therefore: 
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Thus we can conclude, that various time constants in a system contribute to the noise power spectrum like a 
N-pole filter. This is also correct for LC-filters, as they are used in RF-technology. The roll-off of such filter 
combinations is equal to (f-f0)2N, if f0 is the resonance frequency of the filters. This result seems rather trivial, 
but is the basis for all multi-pole filters in RF-technology.. 
 

It is interesting how the Fourier-transform of u(t-t’) and the noise power spectrum look like in special cases. 
The case of an asymmetric RC-filter we have considered above. The result looks different for a symmetric 
exponential filter function. In this case we have: 
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The correlation function is then: 
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This correlation function generates a power spectrum like 
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while the amplitude Fourier transform is: 
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When comparing with the asymmetric case the result looks a bit surprising, and it is a good demonstration, 
how important the small details may become, when discussing the effects of different filters. The asymmetric 
function generates a 1/f2 power spectrum while the symmetric function generates a 1/f 4 power spectrum (at f 
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large). 
 

Another example is a symmetric Gaussian filter with 
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Δ stands for the effective time width of the filter: 
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It is the equivalent width of a box-car filter with identical peak response of the filter function. We find here for 
the correlation function: 
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The power spectrum is now: 
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This spectral distribution rolls off faster than any power of 1/f2 (f  large), but is again finite at f=0. The FWHM δf  
of the frequency distribution is given by:   

∆
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δf  

It should be pointed out again that it is not possible to describe random noise with an analytic amplitude func-
tion of time or else. Instead, it is only the spectral power distribution one can describe analytically, which is the 
Fourier-transform of the auto-correlation function of the amplitude. At the same time, the spectral power distri-
bution is the absolute square of the spectral amplitude distribution, if such distribution could be established. 
This makes things a bit complicated. The easiest way to generate artificial data with a particular spectral 
power distribution is to generate first white noise data by using a good random number generator. Following is 
a Fourier-transform of these data, which leads to a unique constant, but noisy spectral distribution of the am-
plitude. When multiplying with a spectral function, which is equal to the square root of the desired power dis-
tribution, one obtains a new spectrum which represents the desired spectral power distribution. With a back-
ward Fourier transformation we get finally a data set, which has the wanted characteristics. This can be 
proven by the calculation of the correlation function and its Fourier transform. The new amplitude function will 
look different for any new white noise input data set no matter what the length of the data set is. Therefore, 
any new set will be different from any other set. It is clear that a power law like 1/f α cannot be produced for 
arbitrary small values of f. Therefore, again, this makes it evident that something like a lower cut-off frequency 
or similar must exist. 
 
 
    The situation during "real" measurements 
 

The arguments before are valid for the signals as they are measured by any instrument. In general, one does 
not investigate the behavior of the instantaneous signal function x(t), but instead one pre-integrates the signal 
over some time interval “T”. If we describe the statistical behavior of an instantaneous signal function x(t) by 
its original correlation function  
 

                  𝐺(𝜏)  = < 𝑥(𝑡) ∙ 𝑥(𝑡 + 𝜏) >, 
 

then we can determine the correlation function of the integrated signal. (For simplicity we skip the use of the 
sums in the formulas.) Usually, in a typical experiment, the measured signal is the average of the signal func-
tion x(t’) taken over a time interval T beginning at time t and not the instantaneous signal voltage itself. Hence 
we have for the measured signal: 
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(Here we consider boxcar integration of the signal, an integrator with exponential characteristics does not 
change the following arguments.) For the expectation value of y(t,T) we have now for example: 
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It means that the expectation of the integrated signal is identical with the expectation of the not integrated sig-
nal. For this "new" signal we can define a new correlation function GT(τ) on the basis of the initial correlation 
function Γ(τ) with  
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τ is the time separation between the begins of the two integrations with length T.  
 

In order to describe the statistics of the integrated data the variance of the statistical distribution of the data 
can now be evaluated: 
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With a zero mean of x(t) we have finally: 
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If we are dealing with white noise, we have: 
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Thus, we get for the new correlation function: 
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and for the variance: 
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We have shown before that the correlation function of a simple exponential filter is given by:    
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In this case we find: 
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In the limiting case of very small T as compared with τs we get: 
 

      𝜎2(𝑇)  =   Γ0
2∙𝜏𝑠

,    and for T very large we have:    𝜎2(𝑇)  =   Γ0
𝑇

. 
 

The second case is unaffected by the time constant in the system, whereas small integration times don’t have 
an effect on the statistics when comparing with no integration. 
 
 
     Measuring Differences 
 

During measurements with a scientific instrument it is quite normal that a "zero"-measurement must be made 
subtracting all contributions of the instrument or the system itself. The difference between the "signal"-meas-
urement and the "zero"-measurement contains the experimental information needed. Thus the influence of the 
"zero"- or "reference"-measurement on the statistical error must be considered. In our case we are interested 
in the situation where the information derived from the difference of signal and the reference is only a very 
small fraction of the background as is measured during the reference phase. 
 

Both, the signal- and the reference-measurement last for an integration time of length T. In addition, there is a 
delay time between the end of the first and the beginning of the second of length TD, thus we have two meas-
urements taken at different times t and t+T+TD: 
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              𝑦1   =   𝑦(𝑡, 𝑇)   =    
1
𝑇

∙ � 𝑥(𝑡′) ∙ 𝑑𝑡′,    𝑦2

𝑡

𝑡−𝑇

  =   𝑦(𝑡 + 𝑇 + 𝑇𝐷 , 𝑇)   =    
1
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∙ � 𝑥(𝑡′) ∙ 𝑑𝑡′.

𝑡+𝑇+𝑇𝐷

𝑡+𝑇𝐷

 

 

We are interested in the result: 
 

                < 𝐷(𝑡, 𝑇𝐷 , 𝑇) >  =  < 𝑦1 − 𝑦2 >  =  < 𝑦(𝑡, 𝑇) − 𝑦(𝑡 + 𝑇𝐷 , 𝑇) >, 
 

which we assume to be zero on average for the moment. For the statistics the variance of the statistical distri-
bution of D(t,TD,T) must be considered: 
 

           𝜎𝐷
2(𝑇𝐷 , 𝑇)   =   < [𝐷(𝑡, 𝑇𝐷 , 𝑇)−< 𝐷(𝑡, 𝑇𝐷 , 𝑇 >)]2 >   =   < 𝐷2(𝑡, 𝑇𝐷 , 𝑇) >  −  < 𝐷(𝑡, 𝑇𝐷 , 𝑇) >2 

 

Since we have: 
 

 < 𝐷(𝑡, 𝑇𝐷 , 𝑇) >  =   0,  we can rewrite: 
 

              𝜎𝐷
2(𝑇𝐷 , 𝑇)  =  < [𝑦1 − 𝑦2]2 >  =  < [𝑦(𝑡, 𝑇) − 𝑦(𝑡 + 𝑇 + 𝑇𝐷 , 𝑇)]2 >  =   2 ∙ [𝐺𝑇(0)  − 𝐺𝑇(𝑇 + 𝑇𝐷)]    [9] 

 

When dealing with actual data, this establishes the connection between the expected statistical distribution 
and the correlation function of the data. It reflects the fact that the error of difference measurements is re-
duced, if there is correlation between the two data y1 and y2. Such correlation may be introduced by drift noise 
for example, and its influence stays small as long as the delay TD is short compared ti the drift time constant.  
 
 
     The Allan-variance  
 

In the past it has been demonstrated that the measurement of the so-called “Allan-variance” is an extremely 
useful tool to characterize the noise performance and thereby the quality of measuring instruments like radi-
ometer systems3. The idea is to determine the errors one has to expect when taking data as differences of 
two independent measurements. The first may be a reference with the signal turned off and the second a 
measurement together with a signal. The difference takes away the undesired background which may be the 
major part of the output of the instrument. This scenario is typical when using Lock-In amplifiers, but is also 
standard during observations with a radio-telescope for example. The Allan variance is the ideal procedure to 
determine the error of differences of noisy data. The issue is here that data closely spaced in time (or space) 
are usually partly correlated due to common drifts in the system for example. It is therefore important to un-
derstand the influence of the correlation. When measuring a signal as the difference between two adjacent 
samples, it is clear that long term drift will not have much impact on the result, if the drift is slow in comparison 
to the time difference between the samples. The widely used method to understand the influence of the drifts 
is the measurement of the Allan variance as a function of time difference between two samples. The standard 
definition of the Allan variance is: 
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This is identical with the usual definition of the variance using N=2 (see above).  
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By the way, this is the route how Allan started his definition of the Allan variance for the characterization of 
time standards 4. The two data samples y1 and y2, derived for example from one output channel of an instru-
ment, are usually taken at different times.  
 

In comparison, we have for the variance of difference measurements:: 
 

22
21

2 2][ AD yy σσ ⋅=>−<=  
 

Each data point is the result of an integration with time “T” beginning at time “t” and “t+TD” as discussed 
above. 
 

For the Allan variance we have therefore: 
 

                 𝜎𝐴
2    =    ½ ∙ 𝜎𝐷

2    =    𝐺𝑇(0) − 𝐺𝑇(𝑇 + 𝑇𝐷)       [10] 
 

Thus, the Allan variance describes the situation of difference measurements very accurately. Only the addi-
tional factor of ½ is to be considered. One could interpret this as the contribution of each data sample to the 
                                                           
3 R.Schieder, G.Rau, B.Vowinkel, Characterisation and Measurement of System Stability,  
    Proceedings of SPIE, Vol. 598, page 189 (1985) 
 

4  D.W. Allan, Statistics of Atomic Frequency Standard, Proceedings of the IEEE, 54, No. 2, 221-231 (1966) 
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error of the difference. Although we consider here the statistical error of difference measurements σD2, we will 
use the Allan variance σA2 for the further discussion, because it is already well established in literature. In ad-
dition, we assume for a meaningful definition of the Allan variance that TD should be zero in order to make 
different measurements comparable. If we would introduce time delay between them, and If there would exist 
only white noise, the statistical error of the difference would be independent on the delay. In this case we find 
a constant value for the variance. But with the presence of drift noise the resulting variance starts to increase 
with increasing time delay between the samples, because the drift noise starts to contribute more and more. 
This explains why it is important to define the experimental method with a clear rule concerning the delay. 
 

We can now continue with 

                      [ ] >⋅<−><+><⋅=>−<⋅= 21
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while using:  2,1, =><−= iyydy iii  

The expectation of the product dy1·dy2 can be converted by using the definition of the normalized first order 
correlation function g12, as is defined above: 
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With this we get now: 
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The variances σy2 are defined as: 
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In most cases the variances of the two samples y1 and y2 are the same. Then we can drop the indices and get 
finally: 
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2
1

2 σσσ ==y  
From this expression we learn that the major distinction between the standard variance σy2 and the Allan vari-
ance σA2 is due to the influence of correlation between the data. The Allan variance is always smaller then or, 
at worst, equal to the ordinary variance. (We assume that anti-correlation does not exist, as is generally true 
for data which exhibit some kind of random statistics.)  
 

The correlation between the data is decisive for the success of the application of a Lock-In amplifier for exam-
ple. If g12 would be zero, the Lock-In would be useless! It is only the correlation, i.e. the drift characteristics of 
the system, which decides about the success of such instrumental effort. It also says that in case of pure 
white noise, where no correlation between adjacent data exists, there is no possibility to improve the signal to 
noise ratio! In other words: The success of the use of a Lock-In depends on the ratio of the amplitude of the 
signal modulation versus the amplitude of the noise fluctuations at the modulation frequency, i.e. at the in-
verse of the time separation between the two phases of the modulation. If the noise power spectrum rolls off 
with frequency, there is a chance to improve the signal to noise ratio (S/R). But in many cases the signal am-
plitude also becomes smaller at higher modulation frequencies so that the gain in S/R may be less than one is 
hoping for. It is frequently stated in literature that the application of a Lock-In has the additional advantage that 
one observes only those noise contributions, which are exactly in phase with the modulation. Therefore, one 
should gain some additional signal to noise. This is not correct, when assuming a purely statistical behavior of 
the noise. Just consider a rectangular modulation, where one sees noise in both phases of the modulation. 
Taking the difference of them results in the same noise contribution as one would see while no modulation is 
applied as long as white noise is concerned. Only the contributions of correlated noise, i.e. drift-noise will be 
suppressed, which is exactly the purpose of the Lock-In method. But noise phases cannot play any role here! 
 

The question remains, what happens to the variance when introducing a delay TD? For example, when doing 
difference measurements with a box-car integrator, it is typical that the instrument integrates for some short 
and fixed integration time T, and, after some delay time TD, another sample is integrated with the same inte-
gration time T. The variance is then dependent on the time length T of the integration as well as eventually on 
the delay time TD between the two samples. For very small T and TD, only the white noise contribution is visi-
ble since the correlation of the drift contribution is at maximum. Consequently, the variance is only determined 
by the white noise level in the signal. With increasing TD, that is with increasing influence of drifts the correla-



24 
 

tion becomes smaller. Therefore, a plot of the variance as a function of TD starts at some lower constant level 
and increases according to the decrease of the correlation. 

Nevertheless, for a practical and unique definition of the experimental conditions for Allan variance measure-
ments we assume that the delay TD is zero, and we determine the Allan variance as a function of the integra-
tion time T only. This is related to the more practical situation, when modulating the signal with different mod-
ulation frequencies, which corresponds to different integration times T. When knowing the increase of σA2 due 
to drifts with integration time T, it is then a straightforward matter to calculate the effect of additional delay TD.  
 

We have seen before that the correlation function of white noise is a Delta-function. According to Eq.[8], we 
have therefore the variance behaving like 1/T. How drift noise appears in the Allan plot can be calculated from 
the correlation function, as was found before for various noise spectra. Using the spectral power law S(f) ~ 
1/fα we have found the approximation for the correlation function (Eq.[7]) 
 

             𝐺𝛼(𝜏)  =   𝐺𝛼(0) − 𝑔𝛼 ∙ 𝜏𝛼−1   for  1 < α < 3     [12] 
 

Drift noise shows as an increase of the variance, which can be calculated using Eq.[10]: 
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Together with white noise we have therefore: 
 

    βσ TbTaA ⋅+= /2    with  β = α-1 
 

At short integration time the variance becomes less since the white noise contribution still dominates. At 
longer integration time the correlation due to low frequency noise (drifts) becomes less, the variance in-
creases again. Consequently the variance passes through a minimum, and increases with some power of T 
behind the minimum. At very large T the drift contribution decreases again like 1/T after it has gone through a 
maximum at an integration time which corresponds to the mean correlation time of the signal output of the 
instrument, as long as it has statistical behavior. The time regime near or above the maximum is not of practi-
cal interest, since taking differences does not provide a significant advantage any more. The minimum in the 
Allan variance plot is now found at 
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and we can rewrite:            
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12 1/    with  t = T/TA    [13] 

Typically, the coefficient β has values between 1 and 2, most of the time it is near 2..  
 

This expression shows that the statistical performance of a system can be described by only three parame-
ters: the white noise level a, the Allan variance minimum time TA, and the power coefficient β, which describes 
the increase due to the presence of drift noise. The value of a is determined by the white noise level and can 
be replaced by the corresponding factors in the radiometer equation, if radiometers are considered for exam-
ple (a = <y>2/BFl, BFl is the “fluctuation bandwidth of the system). If one understands the characteristics of the 
drift noise performance, i.e. if one knows the coefficient β which describes the influence of the drift noise, one 
can now calculate the behavior of the system as a function of any additional delay TD.  
 

Long term drift automatically means correlation between the data as long as they are not very distant in time. 
Thus the Allan plot reveals, in what time regime the data are still sufficiently correlated so that the contribution 
due to the drift component is negligible when taking the difference. This information is precisely what is 
needed for the decision about the speed of an applied signal modulation when using Lock-In amplifiers or 
other observing mode strategies with radio-telescopes for example. The correlation function itself is always a 
function of the time separation between the two data. In general the correlation should disappear for very 
large distances, otherwise the statistics of the signal is not as one should expect for a reasonable experimen-
tal setup.  
 

The example of the Allan variance indicates that correlation between data is a very common phenomenon in 
most experimental situations. Most of the time, signals are detected as differences between two "independ-
ent" measurements, one with the signal turned on and a second "zero-measurement". This procedure is only 
meaningful, if one expects some long-term change of the instruments output, which may be removed by the 
switching procedure. It is therefore important to understand the influence of the correlation on the outcome of 
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the statistical analysis of the experiment. The Allan variance is an excellent tool to learn about such problems. 
It should be understood that this procedure is applicable to any measuring system. It is not just a procedure 
suitable for radiometers! 
 
 
    Calculation of the Allan Variance for various noise power spectra 
 

Despite the well-known behaviour of the variance with white noise only, one has to determine as well, how the 
different drift noise spectra influence the Allan variance. In order to evaluate this one has to find the values of 
(see Equ.[10]): 
 

       )()0(),(2
DTTDA TTGGTT +−=σ . 

 

The results obtained when using simple power series expansion for G(τ) are given earlier. Similar results one 
finds when using the power spectrum of the noise S(f). Although most of these results are given already in 
Ref.5. we present the somewhat refined results here again. We have: 
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From this one obtains for the "ordinary" Allan variance (TD = 0): 
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We set now  S(f) = Sα(f), as defined above, and integrate first from 0 to fl and then from fl to fh. When integrat-
ing we get for α > 0, α ≠ 2k+1 (k = 0,1,2,...) and for  1/fh « T « 1/fl 
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again with ν = (α-1)∙π/2. Γ(x)  is here the well-known “Gamma-function”. The variance develops with the 
square of the integration time at α > 3 and with T α-1 for 1 < α < 3. For α close to the value of 3 both terms, T α-1 
and the first term of the sum with n=1 must be taken into account. Again, note that for α near 2k+1 the singu-
larity in the first term caused by 1/sin(v) is removed by the corresponding term in the sum for n = k. 
 

For α = 2k+1, k = 0, 1, 2, ... we have: 
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with      
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k γ   γ is again Eulers constant (see above). 

In lowest approximation we have now: 
 
 
 
 
 

                                                           
5   Barnes J A, Chi A R, Cutler L S, Healey D J, Leeson D B, McGunigal T E, Mullen J A, Smith W L, Sydnor R L, Vessot R 

F C and Winkler G M R 1971 Characterization of frequency stability IEEE Trans. IM-20 105-120 (1971) 
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The relation between Gα(0) and Sα(0) is given above. For values of α near 3 the terms given for α > 3 and for 
α < 3 must be considered at the same time. When comparing with Eq.[12] from above, we see that β = α-1. 
Thus, Equ.[12] describes the drift noise for all α with 0 < α ≤ 3. Above α = 3 we have β = 2. In all ordinary ex-
perimental situations, we can expect that β is found somewhere between 1 and 2 with the exception of flicker 
noise, where β becomes zero. 
 

From these formulas it is obvious, that for all α ≥ 1 and with fh-1 « T « fl-1 the variance does not become smaller 
with increasing integration time. But, instead, it remains constant for flicker noise (α=1) or even increases for 
α > 1. Therefore, as is frequently discussed in literature, it seems impossible for α ≥ 1 to integrate the noise 
down with longer integration times. Note that the problem is not only existent for flicker noise, but becomes 
even worse for higher order drift noise. 
 

But, this is only true, if the total integration time T is short compared to 1/fl. For long integration times the re-
sult is different. We can rewrite for very large T (T » fl-1): 
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Thus we get for any spectrum Sα(f): 
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Consequently, the variance decreases again like 1/T (as it does at any T for white noise) after having gone 
through a maximum. The result shows again, how important the requirement of a finite value of the spectral 
distribution at zero frequency is. 
 

In consequence of the above assumptions, at time scales of T » fl-1 any noise can be integrated like white 
noise, otherwise the noise spectrum would be not in accordance to "realistic" experimental conditions. In case 
that Sα(0) is not assumed to be finite, that is, without the introduction of a lower cut-off frequency for a noise 
power spectrum like 1/fα the variance would behave completely different or undefined respectively. 
 

Finally we also have to consider additional delays between the two data samples. When integrating, we find 
for α > 3: 
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In the range 1 < α < 3 we have: 
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and for α = 1 we have: 
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For x = TD/T → 0 the expressions approach the formulas given above. For white noise (α = 0) there is no 
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change, i.e. the variance is independent on the delay. Thus with white noise, one observes a variance plot 
with a horizontal slope while keeping the integration time constant and varying the dead-time. Another case is 
the appearance of the plot at the presence of flicker noise. When integrating with very short time T while in-
creasing the delay TD, one sees a slow increase of the variance with a slope of log(TD/T); the limiting value of 
the variance at very large TD is proportional to  
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These are examples how the interpretation of Allan variance measurements depends on the procedure of 
data taking. It is therefore important to use a generally accepted rule in order to guarantee comparable re-
sults. As was mentioned before, we therefore propose to use data without any dead-time while varying the 
integration time T as the standard. 
 

One should mention here, that the results for 1 < α < 3 are identical with the outcome of the direct calculation 
with G(τ) = G0  - Γβ ·τβ (see Eq.[12]) with β = α-1. We find here: 
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This result is valid for all exponents β > -1; also the range of β > 2 (α > 3) is covered, but this has no equiva-
lence with any 1/fα power spectrum anyway. The exceptions are β = 2k (α = 2k+1), k = 1,2,…, while for β = 0 
(α = 1) the limiting expression for β → 0 leads also to the correct result. This proves that the calculations with 
the Fourier transforms and the direct integrations are equivalent. In particular, the assumption of cut-off fre-
quencies is again motivated. The variance is a monotonically increasing function with TD at α ≥ 1, which re-
flects the obvious fact that longer dead time is always bad for the signal to noise ratio. It is a bit surprising that 
this is also valid for flicker noise. Therefore, when investigating the noise characteristics of a system, it is very 
important to avoid dead time between the data samples, or one has to consider the influence accordingly. The 
only exception is the white noise case. 
 

Typical drift performance of most laboratory systems can be described by a slope β in the Allan variance plot 
between 1 and 2. While including the radiometric white noise to the variance as well, we get for the two ex-
treme cases with β = 1,2 (α = 2,3):   
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BFl is the “fluctuation bandwidth of the filter used in the system (see below). It is not immediately obvious, how 
a clean β = 2 slope can be constructed from 1/fα drift spectra. On the other hand, it is rather frequent that such 
slopes appear in Allan variance plots. As was already mentioned before, pure 1/fα spectra should be rare, 
and, when looking on the calculated drift variances above, it seems possible that a β = 2 slope can be as-
sumed when using a mixture of various α including α = 3 and α = 1 spectra in order to remove the logarithmic 
contribution, as is inevitable with a pure α = 3 noise spectrum.  
 
 
    Measurement of the Allan-variance 
 

We should now introduce a procedure for the Allan Variance measurements: Sample data with constant (and 
short) integration time T0 without any delay time between the samples. The data should be collected at con-
stant rate and the total amount of data should cover a time interval which is at least similar to the time con-
stants of the system under investigation. “Time constant” means here the average fluctuation time of the drift 
behavior of the system. If the total time is smaller, one must expect that the data set is not really representa-
tive for the statistical behavior of the system. 
 

New samples for various integration times “T” are now constructed by adding the samples to multiples of the 
initial short integration time T0 so that a full range of T can be established. For each T we have now N(T) new 

[15] 
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samples. The longest TMax should still allow generating samples with sufficient credibility, e.g. N(TMax) ~ 20. 
These data are now the basis for the calculation of the Allan variance as a function of the integration time T. 
The “new” data sets with the integration time TM = M∙T0 are then: 
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We calculate now the Allan variance using: 
 

                    𝜎𝐴
2   =    1

2
 ∙ 

1
𝑁−1

 ∙ � [𝑑𝑛−𝑑𝑛−1]2
𝑁

𝑛=1
  =    𝜎𝑑

2 ∙ �1 − 𝑔1,2(𝑇𝑀)�                                                              [16] 
 

The yn are sums of the initial data at integration time TM. The factor “½” must be applied since the data yn are 
used twice in this formula. 
 

At short intervals the drift noise is strongly correlated and only the white noise contributes to the statistics. At 
large time intervals, the drift correlation disappears and the variance increases therefore. From the plot it is 
easy to determine the time regime where the observing efficiency is optimum, i.e. where the inevitable white 
noise dominantly determines the errors. The standard procedure for Allan variance plots is now: collecting 
many data adjacent in time with short integration time, co-adding them to generate new data with increasing 
integration time, these are then used to calculate the variance as a function of integration time. 
 

 
Fig.[1]: 
 

Artificial data set generated by random numbers (left) with white noise of Gaussian distribution (top), drift noise 
(middle), and combined noise (bottom). Each data point corresponds to a sample integrated for 1 s while the fluctua-
tion bandwidth was set to 600 kHz. The drift noise is calculated by filtering white noise with a sufficiently broad boxcar 
time-filter (width > Tmax in the Allan variance plot). To the right the (relative) Allan variance plots of all three noise 
spectra are depicted. The white noise appears with a slope of −1, the drift noise with a slope of approximately +1. The 
combination of both results in a typical Allan plot with a minimum at some fairly well defined minimum time. 

 
The total number of data is equal to P, while the number of data for each integration time TM is equal to N(TM). 
Thus we have: P = N(T0) = M·N(TM). In order to avoid problems with different total number of data used for 
each N, it is advantageous to use only such N which are divisors of P. Thus, in order to have as many differ-
ent values of N as possible, one should select a P, which has many divisors. Since it is unnecessary to make 
the plot with a very dense distribution of TM, the selection of such values of P helps to avoid superfluous cal-
culations without any additional valuable information. In addition, the density of points becomes almost con-
stant in the logarithmic scale of the plot. This helps to reduce computing time. An example: Take P = N(T0) = 
5040 data at, say, 1 sec integration time. This provides 35 divisors between 1 and 280. The timespan in inte-
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gration time shown on the Allan-plot is therefore between 1 and 280 seconds (4.7 minutes). The total time 
length which is covered by the data set is 1.4 hours, which should be sufficient for most drift problems in the 
system. As it has turned out in the past, it is still useful to go up to an integration time of 280 seconds, alt-
hough there are only 18 samples left. The disadvantage is that the error bars increase accordingly (see be-
low), but one can still see the influence of the drifts at long integrations. If one wants to see the Allan variance 
at much longer integration time one should simply increase the initial integration time T0 instead of increasing 
the number of collected data. 
 
 
     Spectroscopic  Allan-variance 
 

All multi-channel instruments have two types of drift noise. One component is common to all pixels and an-
other is different for different pixels. Typically atmospheric fluctuations generate common changes in all fre-
quency pixels in a radiometer; therefore they should not contribute to a ripple in the baseline of the spectrum. 
Instead they should generate a constant offset to all the pixels, which is of minor significance for spectro-
scopic work. The same is probably also true for the pixels of array bolometers. Baseline ripple seen with a 
spectrometer on the other hand is something which causes changing signal-differences between different pix-
els, and it may accidentally have similar appearance as the spectral line information to be observed with the 
spectrometer. A very special problem is the influence of unstable Laser “speckles” on the CCD detector in an 
AOS. They can be disastrous for the noise performance of the spectrometer. In order to distinguish between 
common and non-common offset drifts we introduced the “spectroscopic Allan variance” for the characteriza-
tion of the noise performance of the spectrometer, which is the Allan variance of the normalized difference of 
two different pixels of the spectrometer. For this we calculate out of the individual data yn

(1)(T) and yn
(2)(T) of 

two pre-selected pixels 1 and 2 (see also in 6): 
 

     
2

1)()(
2

1)(
)2()1(

)2(

)2(

)1(

)1(
)0( ><+><

⋅











+













><
−

><
⋅=

yy
y

Ty
y

TyTy nn
n        [17] 

 

<y(1)> and <y(2)> are the mean values of all collected data while these are numbered in time by the index n. 
The two channels should be selected under the assumption that their statistical behaviour is not correlated. 
The normalized difference removes all common gain drifts of the data of the two pixels, while the factor of 
1/√2 establishes the same relative white noise level as the initial data were subjected to. The additional "1" in 
the brackets guarantees that the relative level of white noise compared to the mean is preserved in the new 
data set. By multiplying the whole expression with the average of the means of the two initial data sets the 
statistical distribution and the mean of the new data becomes comparable in value with those of the initial 
data. It should be emphasized that this data manipulation does not remove the impact of common offset drifts 
completely, but it certainly reduces the common drift influence drastically. Therefore, when comparing the re-
sults of individual channels and the normalized differences one can nicely distinguish between the different 
drift contributions. This relates to problems connected to the generation of sometimes strong and unrealistic 
features in the spectrum which are introduced by the calibration procedure, particularly if the average signals 
at the ON- and the OFF-position are not the same. 
 

This procedure was initially introduced in order to keep the amount of data small, since at that time, the com-
puting power and storage capability of PCs was fairly low. The assumption was that the statistics of all pixels 
of the spectrometer should be more or less identical. In the meantime, the computer capabilities have drasti-
cally improved, and it is now possible to collect and store huge amounts of data and to process them within 
negligible amounts of time. Therefore it is now advisable to use all data of all channels of the spectrometer for 
the characterization of the stability of the instrument. This has the immediate advantage that the behaviour of 
all pixels is investigated simultaneously, and one does not depend on the accidental selection of only two 
spectrometer pixels. To do this, one should extend Eq.[17] to all K pixels of the spectrometer.  
 

             𝑦𝑛
(0)(𝑇)  =   �

1
√𝐾

∙ �
𝑑𝑦𝑛

(𝑘)(𝑇)
< 𝑦(𝑘)(𝑇) >

𝐾

𝑘=1

+ 1�  ∙  
1
𝐾

∙ � < 𝑦(𝑘)(𝑇) >
𝐾

𝑘=1

  =                                             [18] 

with   𝑑𝑦𝑛
(𝑘)(𝑇)  =  𝑦𝑛

(𝑘)(𝑇)− < 𝑦𝑛
(𝑘)(𝑇) > 

 

k stands for the pixel number, k = 1,2,…K. n stands for the individual data samples of pixel k. The average 
<y(k)(T)> =  <y(k)> is identical for all T, since the total data amount is identical for all T (see above). At the same 
time we can replace < 𝑑𝑦𝑛

(𝑘)(𝑇)2 > by < (𝑑𝑦(𝑘))2 > =  𝜎𝑘
2, since expectation of the variance should be 

                                                           
6 The Cologne Acousto-Optical Spectrometers; V.Tolls, R.Schieder, G.Winnewisser; Experimental Astronomy 1, 101 

(1989) 
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independent on n. When calculating the Allan variance with 𝜎𝐴
2(𝑇)  =   ½ ∙< �𝑦𝑛+1
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write as well: 
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− 1  and the “-1” disappears when taking the differences for the calculation of the 
Allan-variance. Using Eq.[16] one finds now: 
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If we assume that the statistics and the correlations between the frequency pixels of the spectrometer are all 
more or less identical, as should be always valid for a decent spectrometer, then we can simplify: 
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With white noise only one has  gk(T) = 0  and  𝜎𝑘
2(𝑇) < 𝑦(𝑘) >2 =  1 (𝐵𝐹𝑙 ∙ 𝑇)⁄⁄ . Thus, one obtains finally: 
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The expression of Keff is already well known from the error of the mean of co-added data (see Eq.[5]). It is not 
surprising that the correlation between adjacent pixels plays some role here. The result shows that the vari-
ance, as defined above, overestimates the Allan-variance. Therefore, Eq.[18] should be modified to: 
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The needed information about the values of the gk(0) can be derived from a measurement of the filter-curve of 
the frequency pixels provided that they are all identical. Instead one could also use Eq.[2] to determine the 
values of correlation. A lot simpler path would be to preselect frequency pixels, e.g. by choosing only pixels 
which are separated by, say, 4 pixels in order to avoid mutual correlation. In this case the value of Keff is ex-
actly identical with the number of preselected pixels. At the same time we have found here the justification, 
why pixels should be chosen far enough apart for the use of Eq.[17]. 
 

In total the expression provides a good impression of the overall performance of the instrument. It shows the 
same behaviour with drift noise, as was discussed before. Nevertheless, experience has proven that the out-
come of a two-channel and a full-channel Allan variance plot is very similar, which confirms the expectation 
that all spectrometer channels behave identical in a statistical sense. It is only essential to use two pixels 
which are separated enough so that any correlation between the channels becomes irrelevant. But one should 
know that using many spectrometer pixels instead of two does not mean that the statistical relevance of the 
analysis is improved. It is still necessary to collect data for a much longer time interval then the Allan-plot is 
showing. It is essential that the data set covers a reasonable time span in comparison with the typical time 
constants of the drifts. Otherwise the plot would not represent a good picture of the behaviour of the instru-
ment. 
 
 
    Ratio Variance 
 

It is not unusual that the gain of an instrument is time-dependent. To consider the difference of adjacent data 
is therefore sometimes a bit problematic. In order to be independent on such gain variations it is advanta-
geous to calculate the statistics of the ratio of two data-packages instead of the difference, as it is done for the 



31 
 

calculation of the normal Allan variance. Therefore, the statistics of the ratio 
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This removes automatically the gain of the system in the statistical analysis. We assume that the standard 
deviation of the data Xn is very small in comparison to their mean. Then we can write: 
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For the statistical investigation we define now: 
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As is stated above, this is only correct for small fluctuations δX. When comparing with the radiometer formula, 
it turns out that this is a very convenient expression, since we have: 
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This is only meaningful, if only white (radiometric) noise is present, but with drift noise the appearance is not 
different from the standard Allan variance plot. In conclusion one can state that the ratio variance is very sim-
ilar to the Allan variance, and the arguments about the Allan variance remain the same for the new definition. 
On the other hand, this new definition is better applicable to all situations where the gain of the system is not 
stable. 
 

All formulas above are valid in principle only if true averages can be evaluated. Since this is not possible 
within finite time, the error analysis of finite data sets must be applied. Therefore, in all cases we use a modi-
fied Allan variance definition, which is derived from the ordinary error analysis for an experimental data set of 
N data Dn with 1 ≤ n ≤ N (see Eq.[4]). The Dn on the other hand are differences of two independent signal 
measurements Xn. We have therefore: 
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(The index n indicates that the samples are measured with the integration beginning at the times tn and tn+T). 
This definition is not exactly identical with the initial definition given by Allan because of the denominator “N-1” 
instead of “N” and the subtraction of the mean of all Dn, which should approach zero anyway. 
 

In reality the effect on the values of the variance is mostly marginal. The meaning of the new definition is 
identical to that of statistical errors of any finite data set, if the difference measurements are considered as the 
individual elements of the data. Therefore the slight modification of the Allan variance should represent the 
real experimental conditions more closely. On the other hand, the additional, and in principal superfluous fac-
tor of 1/2 is still used in order to preserve the context to original definition by Allan and Barnes.  
 
 
    Error of the Allan-variance 
 

For the presentation of the Allan variance plot it is also important to get an additional impression about the 
reliability and credibility of the information shown. For this some estimate of the errors of the calculated Allan 
variance values should be presented as is seen in Fig.1 for example. Each of the measured pairs of signal 
and reference measurements may be assumed to represent a single value of a newly defined function fn: 
 

 𝑓𝑛   =    1
2 ∙ 𝑁

𝑁−1
 ∙  [𝐷𝑛 − 𝐷𝑁]2 
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The mean value of all N individual measurements is the final result of the complete experiment and one gets 
the modified Allan variance: 
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The error of this mean value is easily found when using the common definition in error analysis (neglecting 
correlation): 
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Inserting everything one gets: 
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For large N one can neglect the ratio N/(N-1) and one has: 
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This is the formula one can use for the calculation of the error bars in the Allan-plot. It provides a very good 
impression about the credibility of the calculated Allan variance values. If the errors become too large, the 
meaning of the apparent position of the Allan plot minimum for example cannot be taken very seriously. This 
happens typically, if the total sampling time of the complete data set is too small as compared to the typical 
drift time constant of the system so that it does not provide a true estimate of the drift behaviour of the sys-
tem.7 
 
 
    Noise reduction while co-adding 
 

Co-adding of a couple of pixels of a real time spectrometer in order to improve the signal to noise ratio is gen-
eral practice when dealing with noisy spectra, and, it is also not quite as trivial as most people seem to be-
lieve. This rather simple case can now easily be evaluated similar to the treatment before. We have to deter-
mine the expected statistics of the mean of data yn with: 

   ∑
=

+⋅=
N

n
knNk yz

1

1
 

with N the number of co-added pixels. We get now identical to the derivation before: 
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  [21] 
 

This is the same expression for the variance of the average of N data, as was discussed earlier. The effective 
number of pixels Neff is obviously smaller than the number of co-added pixels. In the limiting case of very large 
N we get: 
 

      𝑁𝑡𝑓𝑓 =   
𝑁

1 + 2 ∙ 𝑔1 + 2 ∙ 𝑔2 + ⋯
 

 

The values of the correlation gk can now be calculated if the filter-curves of the spectrometer are known. Usu-
ally one can easily calculate them when measuring the single frequency response of one spectrometer pixel 
as a function of frequency. 
 

If we consider the situation when using a spectrometer like a filter-bank, an auto-correlator, or an AOS; then 
the filter-curve of co-added pixel-data with large N should be approximately equivalent to a square shaped fil-
ter with about the same frequency width as the total of co-added pixels represents. Therefore, the "fluctuation 
bandwidth” BN, which now determines the residual noise by means of the radiometer equation, should be-
come very closely identical to N times the pixel spacing "d" in the spectrometer. We have therefore: 

        
tB

C
N

N ⋅
=2σ   and  
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C
Fl

y ⋅
=2σ  

                                                           
7 A detailed discussion of applications of Allan-variance tests can be found in: “Optimization of Heterodyne Observations 

Using Allan Variance  Measurements; R.Schieder, C.Kramer; A&A 373, 746-756 (2001)" 
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"C" is an irrelevant constant which depends on the observing mode, and "t" is the integration time used for the 
observation. "BFl" is the fluctuation bandwidth of one single pixel of the spectrometer. In case of large N, this 
leads to: 

          dNB
gg

NB FlN ⋅⇒⋅
+⋅+⋅+

=
...221 21

 

 =>     BFl =  d · {1 + 2·g1 + 2·g2 + ... }  
 

This relation is only valid, if the pixel separation is small as compared to the resolution bandwidth of each 
pixel.  
 

As an example, for the SWAS AOS we have the following experimental values: 

separation of pixels:                                    d = 1.03 MHz 

Cross-correlation between pixels:              g1 = 0.44 
                                g2 = 0.10 
                                g3 = 0.02 
                                gk = 0  for  k > 3 
This leads to: 
 

       BFl  =  2.12·d  =  2.2 MHz 
 

The value of BFl for the single pixel fluctuation bandwidth is exactly what was measured for the SWAS AOS 
during the ground tests and also later in orbit by means of the Allan variance test. At the same time, the meas-
urement of the single pixel filter-curve delivers the same value.  
 

Similarly, we can now calculate the effective number of pixels in the limiting case of large N: 
 

    Neff(N large)  =  N / 2.12. 
 

This means, the rms noise reduction is only about 69% of the naively expected value when just considering 
the number of co-added pixels. These results show very nicely, how significant the cross-correlation between 
pixels is when dealing with the baseline noise of the spectra taken with such an instrument. It is interesting to 
note that, according to Eq.[21], the discrepancy between the effective number of pixels and N becomes 
smaller at small N. We have for example for the SWAS-AOS: 

       Neff(N=2)  =  2 / 1.44 = 1.39 
       Neff(N=3)  =  3 / 1.65 = 1.81 
       Neff(N=4)  =  4 / 1.77 = 2.26 

Similar are the effects on the effective fluctuation bandwidth. These results demonstrate how significant the 
influence of the correlation for the application of co-adding is. 
 
 
    Noise reduction when repeating measurements 
 

Before, we have investigated the variances of different noise spectra, but we have not yet verified how the 
errors develop when repeating measurements several times in order to improve the error budget. The ques-
tion is how the resulting errors will look like when starting from a particular value of the Allan variance even in 
the drift domain at arbitrary integration time T after many measurements. The outcome is obvious with white 
noise, but still not yet clear for the various drift noise spectra considered above.  
 

When doing difference measurements with a box-car integrator, it is typical that the instrument integrates for 
some short and fixed integration time T, and, after some delay time TD, another sample is integrated with the 
same integration time T. The variance is then dependent on the time length T of the integration as well as on 
the delay time TD between the two samples. With pure white noise, one should expect that the noise is inde-
pendent on the delay time TD, and the standard deviation should decrease like 1/√T when varying the integra-
tion time T. This calls for long T in order to have low noise. On the other hand, one usually has limited time for 
doing the experiment; let us call the total time for the observation TTot, which is given by: 
 

 TTot   =   2·N·T + (2·N-1)·TD 
 

N is the number of pairs of samples taken within the total time TTot. Clearly, the optimum strategy for the 
measurement would be to reduce the influence of TD by making it zero or choose N = 1. But this is only true of 
we do not have to deal with drift noise. In this case we are not allowed to integrate for arbitrarily long T, but 
instead we have a limit before the drift contributes significantly to the overall statistics. This limit needs to be 
found. The Allan variance tells us, how the error of one individual pair of data looks like when neglecting any 
delay time TD. In this case the total variance of one single pair measurement is given by: 
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The factor of 2 arises because we take the difference of two data. When repeating the measurement the final 
variance should develop like 1/N. Thus we have: 
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In case of pure white noise, σA2 develops like 1/T so that σA2·T becomes independent on T. This confirms the 
usual result that the rms goes like 1/√TTot. It shows that the value of the Allan variance determines what error 
budget one has to deal with after a sometimes lengthy data collection. The question is now, whether the ac-
tual value of the Allan variance for a given integration time T still determines the final outcome of an experi-
ment. When assuming that the drift noise does also behave in a pure statistical manner, then we should ex-
pect that the arguments above apply under all circumstances. 
 

The question is now how the drift noise behaves when averaging. This question is not trivial, since it is rather 
likely that the drift movements are still strongly correlated within the time period of a couple of difference 
measurements. Therefore, when running an Allan variance plot, can we assume that at any integration time T 
the average reduces like 1/N, if N is the number of samples taken? This means in consequence that any rms-
error found for individual samples with Allan variance measurements is the starting point of the averaging pro-
cedure even if severe drift noise is present. But, frequently one gets the impression in the literature that this 
should not apply for flicker noise for example. In fact, this conclusion would be valid for any drift noise with 
α ≥ 1, and it holds certainly for the rather theoretical assumption that a lower cut-off frequency fl is missing. 
But from an experimental point of view, as is considered here, one should reinvestigate the problem. 
 

The final error of the complete measurement is the error of the mean DN of all N difference measurements 
Dn = Sn - Rn with 
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For simplicity we assume, that there is no dead-time involved (TD = 0), and that N is very large. We write: 
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For the variance we have to evaluate the expectation values: 
 

   222 )( tNtNN DDT ><−><=σ  
 

The suffix t stands for the average over very long time t. Since we are interested in the noise only, we may 
assume that the average of S and R are the same so that <DN> is exactly zero. We have now finally: 
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and we get, using the definition of the correlation function g(τ): 
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While introducing the Fourier transform S(f) of the correlation function, and summing all terms in the double 
sum we get after some tedious, but straightforward manipulations: 
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The integrand remains finite at f → 0, because S(f) is assumed to be finite at zero. But instead, the integrand 
develops poles for f·T = k+½ (k = 0, ±1, ±2, ...), if N becomes very large. 
 

For the following we assume again that 1/fh « T « 1/fl. It is now useful to rewrite (see e.g. [Footnote 2]): 
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From this we find therefore for large N: 
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with δ(x) the Dirac Delta-function. This approximation is valid as long as S(f) can be considered as practically 
constant within a frequency interval of Δf ≈ 1/(NT) around the poles at (k+½)/T. This determines a lower limit 
for the number of samples N. If N is large enough this condition is always true, since S(f) does not diverge at 
any frequency and is a "smooth" function of f. This is assured by the assumptions for the correlation function 
g(τ). Thus we have, when integrating from fl to ∞ while neglecting the interval between 0 and fl for the mo-
ment: 
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On the other hand, for the integration within the frequency interval 0 ≤ f < fl and with T « 1/fl, N·T » 1/fl 
(sin2(2πNfT) < 1!) we find: 
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since S(0) is finite and nearly constant between 0 and fl, while f·T is very small compared to unity within this 
interval so that  sin2(πfT) ≈ (πfT)2,  cos(πfT) ≈ 1, and  <sin2(2πNfT)> = ½ < 1. Thus, we get finally: 
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Until here we did not assume any particular spectral distribution of the noise power, therefore the result ap-
plies for any S(f) as long as the conditions for the correlation function are fulfilled. Since S(f) is assumed to 
remain finite for all f and to approach zero at f → fh, the sum is definitely convergent, independent on the ac-
tual shape of S(f). Thus, the result shows that the variance develops like 1/N for any drift noise as required for 
the success of averaging.  
 

Considering a specific spectral power law we use for fl ≤ f ≤ fh: 
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From this we get: 
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K is the next integer below fh·T-½, which is large compared to unity but still finite since fh is finite. Neverthe-
less, the sum can be extended to K → ∞ without too much error because of the rapid decrease of the terms in 
the sum. The second sum may be neglected because fh·T is very large, and we get finally for α > 0: 
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λ(x) = (1 - 2-x) · ζ(x), and ζ(x) is the Riemann Zeta function (see e.g. [Footnote 2]). λ(2) is equal to π2/8 and de-
creases monotonically to the limiting value of 1 for x → ∞ so that we have: 8/π2 ≈ 0.81 ≤  λ(α+2)/λ(2) ≤ 1. It is 
interesting to note that the variance of the average increases like Tα-1 (α > 1) without any upper limit for α, 
which is different from the result found for the Allan variance. 
 

For 1 < α ≤ 3 the Allan variance is also proportional to Tα-1, and we can write: 
     )(222 TC ANN σσ α ⋅⋅=  
The factor of 2 appears because of the difference of two independent measurements S and R. Using the ex-
pression for σA2(T) one finds, that the value of Cα is 1 for α = 0 and decreases monotonically with increasing 
α. Therefore we can assume, that with any "normal" drift noise with 1 < α ≤ 3 the statistical error of the aver-
aged measurements behaves like 
     )(222 TANN σσ ⋅≤          [22] 
as long as we have for the complete observing time TObs: 
     12 −>>⋅⋅= lObs fTNT    and   1−<< lfT  
It means that the total observing time needs to be long enough in comparison with the longest drift time con-
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stants, but the individual integration times T need to be very small. For large α > 3 the derivation above be-
comes questionable since the leading term of σA2(T) is proportional to T2, and the term Tα-1 grows faster than 
T2. But such exponents are probably not of interest during standard experimental situations. 
 

This result is important, because it proves that, when using an Allan variance measurement a prediction of the 
final error after averaging is possible. This is true for all drift noise contributions as well as for flicker noise! 
Usually this is only assumed for the case of white noise! For sufficiently long observing time the noise reduc-
tion is at least the same as for white noise. It is a straightforward matter to derive the identical result also 
when introducing an additional delay time between the signal- and reference-measurement. It can therefore 
be concluded that the result above holds under any relevant experimental circumstances. Therefore, taking a 
value at a particular integration time T in the Allan plot, it is the starting value for any following averaging. 
 
 
    Error estimate of arbitrary linear functions of correlated data 
 

Frequently it is very important to investigate, how the usual error estimate is affected by correlation. Let us as-
sume the standard procedure to evaluate errors from a function F(y1,y2,....yN) of the data set {yn: n = 1,2,…,N} 
is: 
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with    dyn  =  yn  - <yn> 
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We assume now again, that the statistics of the data points is the same for all n. When inserting now the de-
rivatives of F, we get: 
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On the other hand, if we use the general definition of the variance, we have: 

        

.....

][

][

1

1
11

1

22

11

2

1

2

1

2

1

222

+>⋅<⋅⋅+><⋅=

=>⋅<=>⋅<=

=>⋅<−>⋅<=><−><=

∑∑

∑∑∑

∑∑

−

=
++

=

===

==

N

m
nnnn

N

m
nn

N

m
mn

N

n

N

n
nn

N

n
nn

N

n
nnF

dydyffdyf

dydydyf

yfyfFFσ

 

When comparing this with the standard expression for errors, it becomes clear that the error estimate, as we 
all have learned it during the beginners laboratory education, may be incorrect. The correlation between the 
data changes the picture completely. In all ordinary cases the values of the correlation function gk are non-
negative, so that the correct value is always larger than the simpler estimate from above. What we find here is 
that the correct formula for the error analysis is: 
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which is not the standard expression! There is only agreement, if there is no correlation in the data. 

When assuming the errors of all yn to be identical, we get now: 
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The first term corresponds to the usual "Gaussian" error estimate of Eq.[23], while the following terms in the 
brackets take into account the mutual correlation between the data points. Assuming a linear relationship be-
tween the yn and the fit function F while inserting we get: 
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    Error Estimate of Fit-Parameters of an Arbitrary Fit-Function 
 

The standard procedure for fitting a set of K data  yk = y(xk) with 1 ≤ k ≤ K to a predefined function  
Fn = F(a1,…,aP;xn) uses a linearization algorithm. The function F is a function of P parameters ap, p = 
1,…,P, and of a single variable x. For the fit we want to minimize the differences between the fit function and 
the data. In case the fit function describes fully the reality, we expect a normal statistical distribution of the 
differences between data and fit. Thus we use the standard definition of the variance of this distribution and 
try to minimize it in order to find the optimum parameters of the fit function. Thus, the following expression is 
minimized: 
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The fit function might be the mean value of all data, as was discussed before for example. One should be 
aware of the fact that frequently the fit function does not fully describe reality. This destroys the assumption of 
the statistical distribution, or, in other words, the differences between data and fit function become strongly 
correlated. 
 

The minimum requirement leads to P equations with: 
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We use an iterative process. At the kth step we have a set of parameters ap
(k) (which is not yet the correct 

one), and we can determine corrections of the ap
(k) by expanding F(a1,…,aP,xk) with 
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where dap(n+1) stands for:         dap(n+1) = ap(n+1) – ap(n) 

Accordingly, this defines an iteration for the evaluation of the parameters ap. Inserting above we get: 
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We rearrange this: 
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and a vector  b(k)  with the components    ∑
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The P equations above can now be combined to: 
 

     A(k) · da(k+1)  =  b(k) 
 

The vector   da(k+1)  consists of the components  dap
(k+1) with p = 1,…,P. We are interested in the vector 

da(k+1), which we can determine by introducing the inverse matrix A-1 with the components Apq-1   
(A · A-1  =   A-1 · A  = 1, the 1 stands for the unity matrix.). We get now: 
 

       da(k+1)  =  A -1(k) · b(k)    or as components: 
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it represents an inhomogeneous set of linear equations of the experimental data yk, which justifies the linearity 
assumption before for any fit-function F in this approximation. Repeating the calculation while using the above 
equation many times leads finally to the desired values of the parameters ap, when the dap(k+1) approach zero. 
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The total errors of the fit-parameters ap are determined by the errors of the bq, so that we have: 
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(Note that we neglect here the iteration indicator “(k)”) The errors δbq of the bq are completely determined by 
the errors of the experimental data yk: 
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Assuming that all errors of the yk are identical we can write: 
 

      <dyn·dyn+s>  =  σy
2 · gs 

 

with gs the normalized correlation function of the data dyn. In reality, a reasonable error estimate is mostly ra-
ther difficult. It is therefore practical to use for the error estimate: 
                  );,...,( 1 nPnnnn xaaFyFydy −=−=  
This includes now the eventually present errors due to an incorrect fit function F as well. The variance is then 
calculated by: 
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The calculation gs of the correlation function follows the same rules as described earlier. Yet, if the fit-function 
is not appropriate, it is rather likely that the differences yn – Fn have a non-statistical behaviour. It is therefore 
important to investigate the difference carefully and to introduce an improved fit-function if necessary. If things 
are “perfect”, then we can write:    
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This is the complete and final equation for the error estimate of the fit parameters ap. It is obvious that correla-
tion of data makes the error estimate a lot more complicated. But with modern computers it should not cause 
too much trouble. What is left is the evaluation of the correlation gs. It can be calculated by using: 
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The fit parameters ap are those found with the fit after a sufficient number of iterations. The correlation be-
comes influenced by the validity of the fit-function F ! If it is not well chosen, the correlation values gk become 
larger. In particular, e.g. large baseline ripples in a spectrum result in strong correlation even at large k. This 
has consequently enormous influence on the error estimation. 
 

Sometimes it may be quite tedious to calculate these quantities, but, if all data are uncorrelated (the fit is per-
fect!), the equation simplifies to:   
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Here we can use that  
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Without correlation between the individual experimental data yk the well-known and rather simple error esti-
mate is valid: 
 

           𝜎𝑝
2  =   𝐴𝑝𝑝

−1 ∙ 𝜎𝑑
2         [28] 

 

This is the mostly used formula for the error of the fit parameters. Nevertheless, it is only a crude estimate of 
the error, and frequently this estimate is too small. If we remember the influence of correlation on the error 
estimate, we should use the correlated fit error from above together with the general error estimate: 
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   with the gs as found above. 
 

This considers now all the deviations between data and fit as well the correlation between the differences of 
data and fit, which appears with an insufficient fit function. In general, the error estimate becomes significantly 
larger, since the gs will probably contribute strongly even at large values of s. (Remember, with full correlation 
between all data, i.e. at gs = 1 for all s, the error estimate becomes undefined, since the denominator and 
eventually also the numerator in the formula become zero!) Again, it might be difficult to derive a reliable esti-
mate of the gs. In some cases it should be possible to repeat the measurement several times so that the error 
bars become smaller. Otherwise, one has to live with the fact that error estimates are estimates and nothing 
else. 
 
 
    An Example: Fit of a "Gaussian" 
 

A good example for the application of the results of the last chapter is the fit of a Gaussian with predetermined 
width to a noisy spectrum. If we call  "Pn" the values of a Gaussian at spectrometer pixel # n with 
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2
∙4∙log (2)    

 D = FWHM of the Gaussian, 
νn = frequency of pixel n, and 
ν0 = frequency of the center of the Gaussian, 

then we have for the fit: 
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with yn the value of pixel n of the spectrometer data. The interval used for the fit is given by the finite pixel 
number N. From this it follows for the peak amplitude "a" of the Gaussian: 
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with d the (constant) spacing between the pixels. The fn, introduced in the last chapter (Eq.[24]), are now: 
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In case the FWHM is large compared to the pixel spacing d, we can replace the sums by the equivalent inte-
grals and get: 
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The coefficients become now: 

         fn = 21/2 · d · Pn 

For the variance of the error distribution of F - which is the square of the rms - we can use now Eq.[26]. If 
there is only noise and no line, <F> is zero, so we have now: 
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σy2 is the variance of the statistical distribution of the initial data set yn, which is assumed to be identical for all 
pixels n. 

The sums over the values of Pm may be replaced again by the integrals: 
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with π = 3.14... . From this we get now: 
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This is the square of the rms error of the fit to the data. The more common error estimate according to Eq.[23] 
leads to a different variance σF2: 
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As one can see again in this particular case, with correlation the error becomes much larger then usually ex-
pected. The correct  

When analyzing the noise performance by means of the statistical distribution of the ratio of the fitted Gaus-
sian area and the conventional rms, one obtains very good information about the validity of the statistical as-
sumptions used for the mathematical treatment here. Or, the other way around, the careful analysis of a data 
set from a spectrometer might reveal some non-statistical performance problems, when comparing with the 
mathematical analysis given here. 
 
 
    Signal to Noise Ratio of the Fit 
 

It is rather common, unfortunately, that radio-astronomical spectra consist of noise predominantly, and it is of-
ten not quite obvious, whether there is a line signal or if the noise just pretends to show a line. For a clear 
identification of a signal it is therefore very important to understand the appearance of the noise in the spec-
trum very accurately. In order to deal with the problem, we will determine here, what Gaussian line signal is 
being "seen" by a fit procedure in case there is plain noise only. This in turn determines how large the error of 
the fit will be. It is clear that the expectation of the Gaussian area, as described in the previous chapter, will be 
zero. Thus, an estimate of the amplitude of the fit result can only be given by using 
 

         S  =  <F2>1/2, 
since <F> is zero in our case. The expectation value of F2 we have already determined above based on an 
the definition given by Eq.[25] (see Eq.[26]). It is evident that the Gaussian area determined by the fit be-
comes larger, if there is correlation between the initial data. This result is not surprising, since, due to the cor-
relation, the values of adjacent pixels become dragged by pixels which accidentally deviate from the mean 
significantly. This somehow might appear as a "line signal", although there is no line in reality.  

Typically, the noise of a spectrum is determined by the rms of the baseline in regions where there is no signal 
present. Such regions need to be determined by the observer. There is certainly quite some subjectivity in-
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volved, and one has to be rather careful when doing this. All routines determining rms values in spectra are 
based on the assumption of non-correlation, therefore Eq.[23] is usually applied. This means the rms of the 
spectrum would be calculated to: 
 

      𝑙𝑚𝑠2  =    𝜎𝑑
2  ∙ �

𝜋
2∙log (2)
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For the signal to noise ratio we find therefore: 
 

        S N⁄   =   S
rms   =   �1 + 2∙g1∙P1
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½+ …� 

 

The correct value of the S/N should be equal to "1" on the other hand, since we are dealing with a "zero-sig-
nal" situation. This can easily be verified when using Eq.[26] for the rms error estimate of the baseline noise. 
Therefore one has to increase the noise rms accordingly. This has the consequence that the level of confi-
dence for e.g. a "3-sigma detection" of a line, as usually given, is reduced significantly. The conclusion must 
be that one has to be very careful when dealing with noisy data, in particular, if correlation is involved.  
 

The discussion here evolved during the SWAS mission when searching for a line signal of molecular Oxygen. 
Since the molecule seemed to be undetectable, it was evident to define some method for a clear distinction of 
just noise in the spectra and/or an eventual line signal. The above discussion helped to find a clear distinction 
between noise and line. 
 
 
    Smoothing of data 
 

The general procedure, when smoothing data, can be described by Eq.[23]. The task is to generate smoothed 
data by co-adding data while applying a weighting function  
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In order to leave any dc-offset or "slow" structures in the data unchanged, the coefficients fm have to fulfill the 
additional normalization condition: 
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The effect of the procedure is a reduction of the rms noise as given by Eq.[25],. 
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It is now simple to define an effective number of pixels according to 
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  with 

       𝑀𝑡𝑓𝑓  =    
1

∑ 𝑓𝑚 
2 + 2 ∙ ∑ 𝑓𝑚 ∙ 𝑓𝑚+1 + 2 ∙ ∑ 𝑓𝑚 ∙ 𝑓𝑚+2 + ⋯𝑀−2

𝑚=1
𝑀−1
𝑚=1

𝑀
𝑚=1

 
 

One example with a simple "box-car" function fn = 1/M leads to  
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Another, frequently used function is a Gaussian. In this case we have: 
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We get for the noise of the smoothed data (for details see above): 
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Using the SWAS-AOS data with D = 3 km/sec we find: 

       M eff  =  0.75 · D/d  =  3.58 
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In case of very large width D of the Gaussian we obtain the limiting value of Meff : 

        Meff  => 0.71 · D/d 

This is to be compared with the effective number of pixels without any correlation. Then we have: 

        Meff  =  1.51 · D/d  =  7.19 

It is rather unpleasant to discover that the effectiveness of the smoothing procedure is only half of that what 
one would probably hope for when forgetting about the correlation. 
 
 
    Direct Data Analysis (Smoothing of derivatives) 
 

In laboratory spectroscopy it is rather common to observe the positions of atomic or molecular line signals by 
looking for zeros of first, sometimes third derivative signals as seen for example when using a Lock-In ampli-
fier together with a frequency modulated source. This method is rather effective but needs the possibility to 
apply frequency modulation on the monochromatic source. The digital storage of data offers a rather simple 
method to extract information like position of lines in measured spectra etc. It is based on a purely mathemati-
cal treatment of data streams, which leads to the same information as the usage of a Lock-In amplifier. As-
sumption is that a (DC-coupled) detector signal is directly digitized and processed afterwards in the computer. 
Signals like first or second derivative are easily derived. For this we use a polynomial fit of order P to the data 
set {yn: 1 ≤ m ≤ M} so that: 
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with 0 ≤ p ≤ P. 
 

The coefficients ap are related to the derivatives of the data set ym, since we can write: 

    ...
!2

)0(
!1

)0()0()(
2

2

2
+⋅+⋅+== mm

mm
x

dx
ydx

dx
dyyxyy  

The ap can be therefore identified by 
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Certainly, we do not use a polynomial of higher degree than is necessary for the calculation of the corre-
sponding derivative. Thus, for a first derivative we use P=1, or for a second derivative we use P=2. The ex-
pansion coefficients are now determined for windows of width “M”, which one can chose according to the 
needs of smoothing. Certainly, the success of the algorithm depends on the scanning speed across the spec-
trum. It is essential that within the time needed to scan through the window of M data points the noise is not 
dominated by drift noise. Therefore, scanning needs to be fairly rapid. This is different from most modulation 
methods like with a Lock-In amplifier. 
 

When applying this to a data stream, one gets immediately the spectrum of the derivatives, while the center of 
the window is shifted point by point. When writing this properly, we have as before: 
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For the first derivative assuming equidistant xm (xm+1 – xm = δ) we have: 
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With a Window width of M = 2 we get the usual formula for the derivative:   
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Larger M lead to a saw-tooth window. For instance, for M = 6 we get: 
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For the second derivative we have:  
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For the smallest possible M = 3 we have here: 
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This again is the standard expression, when calculating a second derivative from a data set. With M = 6 we 
have for example: 
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The method may be continued to higher orders. The advantage of the procedure is that it leads directly to the 
smoothed values of the derivatives, which can be very useful. In addition, one does not need sophisticated 
hardware, modulation schemes, or integrators to extract the desired information like line profiles of molecular 
absorptions for example. Just a computer and an ADC is required. 
 

In many cases it is practical to use a symmetric arrangement of the data points with –K ≤ m ≤ +K instead of 
1≤ m ≤N. The above formula becomes in this case: 
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In consequence, when calculating the coefficients ap, all sums over the xm
p become zero for p odd, provided 

the xm are equidistant. The total number of data points is odd (M = 2∙K+1), when using this formula. The first 
derivative is in this case: 
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Similar, we have for the second derivative: 
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With modern computers it is easy to generate the desired information online while taking data, since the re-
quired mathematical procedures are rather simple. The width of the window, i.e. the values of M (or K), de-
termine, how much smoothing of the data is applied. At the same time, the width should match the structure of 
the expected signals, i.e. it should be near or slightly smaller than the half-width of a molecular line for exam-
ple. At the same time, the time between taking individual data should fit to the time constant of the analogue 
system. (For this, see below.) By the way, the algorithm can be improved in speed, when using an iterative 
procedure for the data handling. It consists more or less in co-adding the next new value and subtracting older 
ones. The details we will not discuss here. Another question is, how much shift one should use between indi-
vidual smoothed data values. It is obvious that with M large at a shift of ∆n = 1, the adjacent data, are strongly 
correlated. This is generally not very desirable. A good proposal might be to shift by half a window width, 
which corresponds more or less to the so called “Nyquist Sampling”. This is a compromise between correla-
tion and amount of data.  
 

It is important to know, how much improvement of the signal to noise one can achieve as a function of the 
window width N. According to the previous consideration we have for the resulting noise level: 
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when assuming identical noise for all data points yn. The coefficients fn are  
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Neglecting any correlation (gk = 0, k > 0)  we can now calculate the resulting variance using 
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This assumes that the timing of the data stream is appropriate and constant. The other sums are more com-
plicated, but can also be calculated, if correlation needs to be included in the calculation. 
 

As is visible in Table [1], the rms noise of the first and second derivatives reduces drastically with the width of 
the window. With large M it develops like 1/M3/2 for the first derivative and like 1/M5/2 for the second. The per-
formance compares nicely with the function of the RC-filter in the output of a Lock-In amplifier. But the algo-
rithm has the advantage, that a memory effect 0f more than the width of the window is absent, what is cer-
tainly very different from that what a standard RC filter or most of the published digital filters are doing. 
 
     M  \  (Σ fn

2)1/2 <y>[M] <dy/dx>[M] <d2y/dx2>[M] 
       1   1.00 - - 
       2   0.71 1.41   - 
       3   0.58 0.71   2.45     
       5   0.45 0.32   0.53     
     10 0.32 0.11   0.087   
     20 0.22 0.039 0.015   

 
Table [1]:  rms noise amplitude after application of the derivative algorithm. 
 
 

Conclusion: 
 

The amazing fact is that one does not need sophisticated hardware to extract signal information from a data 
stream as is usually implemented by means of Lock-In amplifiers or box-car integrators. It is fully sufficient to 
sample with proper speed, which is adjusted to the expected signal variation in the data stream. (How one 
should use an AD-converter efficiently is discussed below.) Any information can then be extracted by digital 
means in the computer. In addition, when adjusting the window width, final filtering is also available with the 
advantage that one must not deal with nasty time constants, which may asymmetrically distort the signals af-
ter all. The procedure is simple enough to do everything on-line, so that one does not loose immediate access 
to the information. In principle, the algorithm may be implemented into a hard-wired FPGA with the advantage 
that time delay does not occur. 
 
 
    Other modulation schemes 
 

The method described above could be used for signal detection in laboratory experiments. On the other hand, 
the rapidly developing digital technology allows considering other schemes for signal detection than a simple 
Lock-In amplifier for example uses. The disadvantage of a Lock-In is that any strong modulated interference 
close to any harmonics or sub-harmonics of the modulation frequency in use causes severe perturbations in 
the output. A typical example is the “hum” of the power line (50 or 60 cycles per second), which is often pre-
sent in systems with very sensitive signal detectors. But it is by no means necessary to use a well-defined 
modulation frequency for the experimental procedure. Using computers one can easily detect signals when 
implementing any arbitrary sequence of signal switching. Let us assume to use a modulator which turns a sig-
nal On and Off in any desired fashion. Instead of periodically switching it might be useful to apply some ran-
dom switching scheme, as long the detection method knows about the switching sequence. An example is the 
nowadays intensively used “Direct Sequence Spread Spectrum” known as ‘DSSS’ (see. e.g. in Wikipedia 
http://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum). The basic idea is to distribute the signal over 
a large bandwidth around a center-frequency instead of using only one particular frequency – i.e. the modula-
tion frequency. In consequence the signal becomes more resistant to interference problems. The method is 
widely used in the communication field, particularly for the radio connection of cell-phones. But in earlier days 
it was well known as the “Woodpecker” in the short wave ham radio bands. It was an over-the-horizon-Radar 
in Russia, which operated with enormous power by using quasi-randomly switched phases of the pulsed 

http://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum
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emission. In consequence it became more or less insensitive to the radio-emissions of all stations operating in 
the same radio band. 
 

The idea is to use a random modulation; in case of the Russian Radar it was a multiple phase switch within 
the duration of each emitted pulse of 3,1 msec based on a pseudo-random switch generator. In particular, its 
signal contained a clearly recognizable structure in each pulse, which was identified as a 31-bit pseudo-ran-
dom binary sequence, with a bit-width of 100 μs resulting in the final pulse length. The pseudo-random num-
ber generator can be simply provided by linear shift registers who’s output and some intermediate positions 
are coupled back using XOR-gates or similar to the input while the shift is clocked by an external clock. This 
scheme could easily be adapted for detecting noisy signals in laboratory experiments instead of ordinary 
Lock-In amplifiers while using computers controlling the signal modulation and the signal collection by means 
of an ADC. The advantage is that certain interference problems originating from power lines or motors etc. 
could be suppressed very effectively. (For further details of the pseudo-random-number generators look in 
http://en.wikipedia.org/wiki/Linear_feedback_shift_register. But it would be advisable, to look for generators 
with an even number of shifts, because otherwise an offset of the result would become very likely.) When 
considering schemes as are described above one has to think about a proper implementation of the ana-
logue-to-digital converters. This is discussed below. 
 
  

http://en.wikipedia.org/wiki/Linear_feedback_shift_register
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II. About Analogue to Digital Conversion 
 

Today it is standard that one has to deal with digital instruments, it may be a simple voltmeter or more sophis-
ticated instruments like digital storage oscilloscopes or else. The question is how the analogue-to-digital con-
version should be applied in order to avoid significant losses of important information. It is not very common 
that there are significant differences in the behavior of analogue and digital devices. One of the typical effects 
one can observe with digital oscilloscopes when looking at noise of high frequency signals. More common is 
this effect visible on TV, when dense patterns cause strange “moiré fringes” on the screen. The “digital” 
patterns of the screen pixels are responsible for this effect. The “aliasing” effect is sometimes a quite annoying 
phenomenon. It is the purpose of the following articles to help understand and overcome typical problems of 
digitized data.  
 
 
    The “ideal” ADC 
 

All Analogue-to-Digital Converters (ADC) add noise to the signal, although it is a completely different mecha-
nism than just simple statistics. Let us assume that we have an ADC, which is perfect in response to the input. 
This means that we have regular and completely identical steps in input voltage generating the next bit com-
bination. If we apply a noiseless input signal to the ADC in the voltage interval n∙∆u and (n+1)∙∆u, we get an 
ADC answer “n” at the output. ∆u is the voltage step which increases the ADC-reading by “1”. Therefore, we 
will not be able to determine the voltage with accuracy smaller than ∆u. In fact, it is a systematic error we have 
to deal with. 
 

To illustrate this, let us assume that the probability for the occurrence of a voltage u between n∙∆u and 
(n+1)∙∆u is uniform. Thus we assume a probability distribution for the occurrence of the voltage u like 
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The variance is then 
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The standard deviation is therefore 
 

    rms  =  √σ2  =   ∆u/√12  ≈  0.2887 ∙ ∆u 
 

The uncertainty of the measured voltage is consequently: 
 

      δu  =  ± 0.2887∙∆u 
 

It sounds a bit strange that the uncertainty range is less than half a LSB, but this is the consequence of the 
definition of the standard deviation, which is based on the statistics of a Gaussian distribution. It is important 
to note that the error here is systematic! Therefore, repeating the measurement and averaging does not im-
prove the accuracy! 
 

It is rather amazing that the situation improves, if we add noise to the input. We may describe the input signal 
by its probability distribution: 

duuuduup ⋅







⋅
−

⋅
⋅⋅

=⋅ 2

2
0

2 2
)(exp

2
1)(

σσπ
 

 

The probability to read a value of “n” with the ADC leads then to the Error Function erf(x): 
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If the noise amplitude is large enough, i.e. if ∆u/√(2∙σ2) « 1, then we can approximate  
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The expectation value of the ADC output is now given by: 
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and the expected voltage reading is 
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The sum we can consider as the Riemann-sum of an integral 
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The result is not valid close to the edges of the ADC range, where parts of the voltage amplitudes are cut off.  
 

Similar, we have for the expectation of u2: 
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Thus, the resulting variance is: 
      2222 σσ =><−><= uutot  
This looks like a trivial result but it is only correct, as long as the approximations above are valid. This is only 
possible for large σ2 and far away from the ends of the input range of the ADC! 
 

We have now learned about the two extreme cases σ2 → 0 and σ2 large. What happens in between? This 
problem cannot be solved analytically, and we have to ask the computer for a correct answer. For an  
estimate of the systematic error we have to calculate the expectation <n> and <n2> using the correct formula 
Eq.[30] while using as input u0 = (m+s) ∙∆u  with  0 ≤ s < 1. When varying s we expect that the expectation 
<u> = <n>∙∆u does not exactly agree with u0. The result, i.e. the difference δu0 = <u> - u0, is plotted in Fig[2]. 
The structure repeats over the range of the ADC with the exception that near zero and N we have strong er-
rors because of the missing voltage coverage of the ADC at the edges. When neglecting the edges we can 
now calculate the average variation of σu2 = <δu02> - <δu0>2, which should be equal to ∆u/12 for σ2 = 0. The 
result of the computation is plotted in Fig.[3] as a function of σ2. For values of √σ2 larger than 0.4∙∆u the re-
maining error is less than 1% of ∆u, and the ADC operates with an accuracy of nearly 5 additional Bit when 
comparing with zero input noise (rms ~ 0.01∙∆u  instead of ∆u/√12).  
 

It should be understood that one has to repeat the measurement many times in order to reduce the statistical 
error accordingly, since the discussion here concerns only the systematic error of the ADC. One can estimate 
the statistical error by using 
 

   σK2  ≈  1/K ∙ σ2. 
 

Once σK2 has reached the value of the systematic error, it is not worthwhile to continue sampling. Neverthe-
less, we have found the important information that fairly moderate noise amplitudes at the input improve the 
ADC resolution significantly, but many data samples are needed in order to reach this accuracy. For example, 
to get to the 1% level of one LSB one needs at least 1600 samples (=[0.4/0.01]2), which is an issue for the 
available observing time. By the way, the KOSMA AOS use a sampling interval of 10 msec. The one percent 
level would therefore be reached after 16 seconds. But, don’t forget, this is correct for a noise rms of 0.4 LSB. 
Typically one has much higher noise in the range of more than 10 LSB, when using a 12 Bit ADC. Therefore, 
one needs at least 3 hours integration time for 1% accuracy. This is not always an unusual observing time; 
therefore, the arguments here apply in reality indeed. 
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    Fig.[2]: 
 

Deviation of expectation of the ADC-output from input with 
various noise amplitudes. The mean deviation between 
average input and output is below 1% of one LSB at an 
input rms noise amplitude larger than 0.4 LSB. Thus, rather 
low noise levels suffice already for small systematic errors. 

    Fig.[3]: 
 

Mean deviation of ADC output from input vs input noise 
rms. 
 

 

 

 
 
 
    Fig.[4]: 
 

Problem areas of an ideal ADC with 12 Bit at the edges of 
the input range. The input noise rms is 5% of the ADC 
range (205 counts). For an error of less than 1 LSB one 
has to stay away from the edges of the input range by 
more than 450 counts. This corresponds to a reduction of 
the useful range of the ADC by more than 20%! 

 

We have mentioned above that near the edges of the ADC range an additional error appears, since the volt-
age fluctuations have a chance to lie outside the input range of the ADC. It depends now on the width of the 
fluctuations, how close one can operate at the edges. The Plot in Fig.[4] shows how the error develops near 
the edges for a fairly large standard deviation of the input noise. In general, one has to stay away from the 
edges by significantly more than 2 times the rms of the input noise to keep the error below 1 LSB. This tells 
us, that it is not of much use to increase the analogue gain in front of the ADC in order to improve the resolu-
tion. The loss in useful operating range is quite drastic. A good compromise should be to keep the noise rms 
at the input of the ADC in the range of a few percent of the ADC range. 
 
 
    The “real” ADC, Integral and Differential Non-Linearity,  
 

Above, we have treated the performance of an ideal ADC, which unfortunately does not exist in reality. Any 
ADC has two problem areas: one is the integral non-linearity (INL) and the other the differential non-linearity 
(DNL). There are different interpretations of these two effects. We call integral non-linearity the deviation of 
the conversion curve from strict linearity. Such behavior is nothing new, if we remember that any amplifier has 
usually also some compression problems with similar consequences. The differential non-linearity is of differ-
ent quality. It reflects the inevitable effect that the various ADC steps are not of equal size. The situation is 
sketched in Fig.[5]. On average the ADC curve never leaves the linearity curve completely, but instead it fluc-
tuates around it. To illustrate the effect, we consider a partially ideal ADC with one step at some digital value 
“m”, where the step size is not ∆u0, but ∆u = ∆u0∙(1+ε). We use again some co-added noise at the input, so 
that the step function of the ADC should not be significant. If the mean voltage at the input is now slowly var-
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ied across the mth position, we find for the output a deviation from the expected value like is plotted in Fig.[6]. 
How should we understand this? 
 
       │                       │ 
    n+1 ├                 ┌─────┘ 
       │                 │ 
    n   ├         ┌───────┘ 
       │         │ 
    n-1 ├     ┌───┘ 
       │     │ 
    n-2 ├ ────┘ 
       │ 
       └─────┴───┴───────┴──────────────> 
             un-1  un      un+1    
 
 Fig.[5]  Response of a "real" ADC to the input voltage. 
 
We describe again the response of the ADC by using the probability function p(u). The output range of the 
ADC is between 0 and N-1. We have now: 
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The last step is allowed because we assume that u0 is far away from the edges of the ADC. Thus we have 
now: 
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If  [(m+1)·∆u – u0] / √(2·σ2) is negative and large in absolute value, the Error Function approaches a value of 
-1 so that the error becomes equal to ε·∆u. This dependence is plotted in Fig.[6] (with ε < 0), and one can see 
that at lower input voltage far below m∙∆u the reading of the ADC is correct. Above we have an error which is 
determined by ε, which was set to -0.4 in our case. A too small step leads to a too large reading. In fact, we 
have constructed quasi an integral non-linearity, since the output deviates from strict linearity on average.  
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Fig.[6]: 
 
INL of a nearly ideal 12 Bit ADC with an -0.4 LSB 
error of the highest Bit. The input noise rms is set to 
10 LSB. Plotted is the difference between output and 
input. 
 

 

In general, standard ADCs do not have just one irregular step, but instead, they have many of them. It is now 
dependent on the ADC type, how these errors look like. A standard ADC works with the principle of succes-
sive approximation, which means that each of the K bit has some minor error. Thus we have 2K output values 
generated with K ADC parameter data. The output of the ADC is then 
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Thus, the ADC does not provide an exact representation of the input voltage. Depending on the values of εk 
the deviation from ideal the ADC is characterized by a mean deviation from ideal described typically by a pa-
rameter q in the ADC specification sheets, which is the average (or sometimes maximum) deviation of the 
ADC output from ideal in units of 1 LSB (Least Significant Bit). Here we talk now about the “differential non-
linearity” (DNL). In case the εk are too large, the ADC may have “missing codes”, i.e. there are output values 
which never can occur, because some step sizes become negative. Such ADCs are un-usable. 
One can calculate now the performance of an ADC with DNL using some properly chosen values of εk. An 
example is given in Table.[2] for a 12-bit ADC. Certainly, also a Flash-ADC may be considered, which means 
that each output value has its own deviation from ideal, independent on the binary values. 
 

K 0 1 2 3     4     5     6     7     8     9    10    11 
εk -0.011461 -0.037152 0.074245 -0.169669 -0.20269 0.23362 0.16646 0.2040 -0.0480 0.1252 -0.0560 -0.2210 

 

Table.[2]:  Sample for the deviations of the 12 conversion values of a sequential approximation ADC. 
 

The ADC has now many such uneven step sizes so that the voltages, which are represented by the output 
values, fluctuate everywhere. It should be understood that these deviations from ideal are systematic, so that 
it does not help to average. Therefore one reaches fairly soon the ultimate limit in sensitivity which such ADC. 
This is particularly disastrous when trying to measure small signal differences with a spectrometer. Since each 
frequency pixel of the spectrometer usually sees different power, the resulting error looks different for each 
pixel. In consequence, the spectrum, particularly the baseline of the spectrum becomes much more “noisy” 
than anticipated. But, as was mentioned already, it is caused by a systematic error of the ADC, which one 
cannot correct afterwards as long as noise is involved. 
 

A simple way to increase the accuracy of the system is to use ADCs with higher number of bit, since generally 
the absolute values of εk must stay significantly below 1 for all binaries, particularly for the lowest ones. This is 
the most important argument for ADCs with high number of Bit! Fig.[7] shows an example of the output signal 
plotted as the difference to the best linear fit (which represents the original input voltage) in units of 1 LSB. 
There is serious fluctuation, although it seems to have some regularity, which is correlated with the changes 
of individual Bit in the ADC. The calculation for the four traces in Fig[8] uses the data in Table [2] at noise lev-
els of √σ2 = 3, 10, and 30 LSB. The corresponding output rms converges to smaller values than without noise 
at a rms = 0.3806 LSB, which is significantly more than 1/√12 = 0.2887 LSB of an ideal ADC, but it needs very 
long sampling times (~ 200, 3500 and 65,000 samples!). It demonstrates that the DNL effect is dependent on 
the width of the voltage fluctuations at the input. The larger the variations, the less visible the DNL becomes.  
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    Fig.[7]:   
 
Typical DNL of a commercial 12-Bit ADC (Experiment by 
Oliver Siebertz, PhD Thesis, Cologne 1998). Plotted is 
the difference between output and input of the ADC. 

 

  

  
 

Fig.[8]:  Calculated DNL of a 12-Bit sequential approximation model-ADC with different input noise levels.  
             Plotted is the difference between output and input. The rms of the difference output-input is: 
             Top left   (zero noise):       0.3806 LSB    Bottom left   (3 LSB noise):    0.2159 LSB 
             Top right (10 LSB noise):  0.1682 LSB    Bottom right (30 LSB noise):  0.1168 LSB 

 

This is a hint, how one can improve the situation. One can add a dither voltage to the input, it may be 
a regular saw-tooth signal or else. If one can measure the dither voltage independently while turning 
off the input signal, one artificially averages over a certain ADC range. With each reading the input 
voltage is therefore varied, so that in effect, one increases artificially the width of the statistical distri-
bution of the input. But one does not have to deal with real statistics, since one knows about the off-
set for each single measurement. After subtraction of the measured dither value, one recovers the 
original signal voltage again. In effect the DNL errors are flattened so that one increases the accuracy 
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after all, but it is on the costs of some dynamic range of the ADC. A linear ramp of the dither voltage 
is already adequate for reducing DNL-effects of the ADC. Typically, a few percent of full ADC range 
dither amplitude is sufficient, so that the loss in dynamic range of the ADC is less than with equivalent 
noise amplitude, because the dither has no statistical behavior. Experience is that one is able to in-
crease the accuracy of an ADC by a factor of three to four, which is often a sufficient improvement. 
This method was implemented in the WBS-system (Wide-Band-Spectrometer) of the HIFI-instrument 
on the Herschel-observatory successfully. The performance of a 14-Bit ADC was improved close to 
the accuracy of a 16-Bit ADC. Such accuracy is particularly important, when detecting weak signals 
with a heterodyne system at larger offsets between On- and Off-positions, as are typical at the pres-
ence of continuum offsets. A good example is the situation while observing atmospheric signals. 
 
 
    Data acquisition with an AD-converter 
 

In general, AD-converters probe the applied signal voltage at a certain instant in time, and they do not inte-
grate like a box-car integrator for example. The typical acquisition time of an ADC is in the range of µsec or 
sometimes much less, which means that the noise amplitude seen is much higher than assumed when aver-
aging over certain time intervals. This is especially true for an input which contains white noise. Also, the well-
known aliasing problem becomes visible when taking data at a speed comparable with the period of an os-
cillating signal at the input. It would be much more informative, if one could integrate with the device. This can 
be achieved by either using an analogue box-car integrator before sampling or by sampling at high speed and 
co-adding afterwards. The co-adding frequency should be faster than the time constant, or better the correla-
tion time of the input signal. Let us assume that we have a low pass filter to smooth the data according to a 
time constant τ. The signal y(t) at the output of the filter is then: 
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x(t) is the signal coupled to the filter. We assume now that we sample the signal y(t) with the ADC at a sam-
pling rate of 1/δ samples per second. We take N samples and co-add them, so that we get finally as the final 
data value: 
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It is obvious that the result approaches that of a box-car integrator as long as  
    δ « τ  and   N∙δ » τ.  
In reality, we are never close to this. The question is therefore, how the three parameters N, δ, and τ can be 
optimized.  When co-adding the ADC output over N samples, the co-added signal is then: 
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1

𝑁 ∙ 𝜏
∙ � � 𝑥(𝑡′) ∙ 𝑅𝑥𝑒 �−

𝑡𝑛 − 𝑡′

𝜏
�

𝑡𝑛

−∞

∙ 𝑑𝑡′
𝑁−1

𝑛=0

,   𝑡𝑛 = 𝑡 + 𝜗 + 𝑛 ∙ 𝛿 
 

Due to the time constant, the data are now partly correlated. ϑ stands for a “wait time” before data accumula-
tion begins. 

We consider an application like with a Lock-In amplifier. We assume that the output of our signal detector pro-
vides a modulated signal, which is of rectangular shape. The modulation amplitude we call ∆S. We assume 
that we have a change in signal by ∆S at t=0. Then we have for the response ∆z: 

              ∆𝑧(𝑡)  =   ∆𝑆 ∙ 1
𝑁

∙ � �1 − 𝑅−𝑡𝑛
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𝛿
𝜏
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𝜏
 

The time ϑ stands here for a waiting time after the change ∆S  has occurred in order to allow some response 
of the filter to the signal change before sampling. With very long ϑ the response ∆z becomes identical with ∆S, 
but one would waste a lot of observing time. On the other hand, at short ϑ, it is clear that the time constant τ 
leads to some memory of the previous signal when starting with the ADC sampling too early.  

We assume that the noise of the signal input is purely white. In this case we can describe the noise of the un-
filtered signal by a correlation function gx like: 
             )()()()()( 22 TctxtxTtxTg x δ⋅+><=>⋅+<=  
<x(t)> = <x>  is the mean signal value. The constant “c” describes the amount of noise and is not important 
here. The correlation function of the filtered signal gy is now: 
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This means that the output data of the filter are now correlated with a time constant τ. The variance of the 
noise fluctuations behind the filter is determined by the value gy at T=0 and at T= ∞, and we have for the 
noise: 
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For the noise of the co-added signal we have Eq.[5] from above: 
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Therefore we get now: 
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The sum can be evaluated and we get finally: 
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At N∙ζ « 1 (N∙δ « τ) the sum in the brackets approaches N, and we have then: 
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This means, that we have zero improvement of the noise when repeating the signal acquisition N times.  

On the other hand, if τ is very small (ζ » 1, δ » τ), the variance becomes  
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But, since τ is supposed to be small as compared to δ, the value of σz2 is still larger than expected.  

If  ζ « 1, i.e. δ « τ  and  N∙ζ » 1, i.e.  N∙δ » τ, then we get: 
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since N is very large in this case. This is practically identical with the ideal case of a true box-car integrator, 
which would be: 
 

           𝜎𝑧
2   =    

𝑐2

𝜗 + (𝑁 − 1) ∙ 𝛿
 

 

If we put the waiting time ϑ equal to δ, the results are identical. It makes sense that we have to wait after the 
occurrence of the signal change, since the response is delayed due to the time constant τ. A sample close to 
ϑ = 0 would contribute practically nothing to the signal reading anyway. The last condition shows, how one 
has to operate: Sample in short intervals, short compared to the time constant of the analogue system, and do 
it much longer than the time constant suggests. 
 

It is not the noise itself alone, which is important, but instead, it is the signal to noise ratio (S/R) one is usually 
interested in. We consider the signal to noise as the ratio of signal response Δz and the standard deviation 
√σz2. The optimum is achieved with a box-car integrator. S/RBox is the theoretical signal to noise ratio obtaina-
ble with a box-car integrator, while integrating for the full time interval tInt =  ϑ+(N-1)∙δ.  
 

       𝑆/𝑅𝐵𝐵𝑥 =   ∆𝑧
𝑐

 ∙  �𝜗 + (𝑁 − 1) ∙ 𝛿  
We discuss the S/R in comparison with that of a boxcar integrator. The ratio R of both is given by: 
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The expression can be optimised, if we determine the maximum for the Signal-to-Noise as a function of the 
number of co-added samples N. This is plotted in Fig.[9]. As it turns out, the optimum is always found at a 
delay near η ≈ 1, i.e. ϑ ≈ τ, which means that longer waiting for further settling of the exponential response 
does not help. For various N the best values are given in Table [3]. 
 

As one can see in the table, the signal to noise improves with large N. Also, the sampling interval δ becomes 
smaller relative to the time constant τ with increasing number of co-added samples. There exists also an op-
timum wait time before one starts to sample the signal with the ADC. This is understandable, since at the very 
beginning the signal has not yet come close to the final value, so that early samples cannot contribute signifi-
cantly to the total. Also, In order to understand the table or the plot respectively, a comment should be made: 
If one wants to sample a signal change ∆S only with one reading of an ADC, the optimum signal to noise is 
provided if one starts to sample after the signal has developed to 1.26 times the applied time constant τ. But 
the reading ∆z will only be 71% of ∆S and the signal to noise will be about 90% of that of an ideal box-car in-
tegrator. In general, the observed signal amplitude ∆z is strongly dependent on N. With N ≤ 5 the error of 
 

  
 
 

 
 

 
 
 
 
 
 
 

 
 

 
∆z at optimum signal to noise is more than 10%, which might be already acceptable. An error of less than 1% 
requires an N in the range of 200 while maintaining best signal to noise. Therefore, one should sample with 
high speed with the ADC and select the number of samples according to the modulation frequency. The high-
est modulation frequency is determined by the minimum number of samples needed for an acceptable signal 
to noise. A proposal might be that N should be always larger than or equal to 10. This guarantees a signal to 
noise level above 95% in comparison to an ideal analogue box-car integrator and signal efficiency above 
90%. By the way, for the range N ≥ 5 a reasonable estimate is near η = 1.0 (wait time ϑ ≈ τ) and near ζ = 0.5 
(sampling interval δ ≈ ½∙τ). The loss in comparison with the ideal signal to noise is not more than about 1% 
for all N in this range. For practical reasons it is therefore recommended to use these values for a computer 
controlled system.  
 

 

 
 
 
Fig.[9]: 
 
Signal to Noise ratio of the ADC box-car simulator 
In percent of an ideal box-car integrator as a function of 
the number of samples. 

    N ηOpt ζOpt ROpt ∆z/∆S at Opt 

1 1.2564 - 90.3% 71.5% 
2 1.3344 0.7200 92.0% 80.4% 
5 1.2611 0.7696 94.0% 89.7% 

10 1.1454 0.6787 95.6% 93.6% 
20 1.0450 0.5627 96.9% 95.9% 
50 0.9452 0.4254 98.1% 97.8% 

100 0.8891 0.3410 98.8% 98.5% 
200 0.8457 0.2723 99.2% 99.1% 
500 0.8031 0.2015 99.5% 99.5% 

1000 0.7792 0.1603 99.7% 99.7% 

Table [3]: Optimum conditions for 
integration as a function of the number of 
samples. η is the ratio of the waiting time ϑ 
and time constant τ, ζ is the ratio of the 
repetition time δ of ADC readings and time 
constant. 
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Fig.[10]: 
 
Optimum sampling interval δ in units of the analogue time 
constant τ as a function of the number of samples N. 

 

When operating an AD-converter with the performance near an analogue box-car integrator, one has to con-
sider the signal to noise as well as the error of the measurement. Finally, one usually averages over many 
modulation periods of the signal and get a box-car integrated answer of the system to the modulation. The 
discussed method is much faster in response than a normal RC-filter could ever provide; therefore, the de-
scribed method should be advantageous in comparison. When using an analogue Lock-In amplifier with sub-
sequent analogue to digital conversion, the situation is not different than described above. When reading the 
output signal, one needs to adjust the sampling rate of the ADC to the time constant of the Lock-In accord-
ingly.  
 

 

 

 

Fig.[11]: 
 
Response efficiency of the ADC box-car simulator to a 
signal step at optimum signal to noise as a function of 
the number of samples N. 

 

Usually, there is always some residual ripple left from the signal modulation at the output of the Lock-In, which 
can only be reduced by means of a long time constant when using the RC-circuitry of the Lock-In. This is a 
particular disadvantage of the analogue Lock-In. When demodulating with the proposed scheme, there is no 
such left-over ripple, which makes the method very different in behaviour. The final integration, which corre-
sponds to the operation of the RC-filter in the analogue Lock-In, can then easily be done in the computer just 
by co-adding the results of several modulation periods. The next sampling can then start without any super-
fluous memory effect of the applied time constant. This means that one can save experiment time, because 
no precious time is wasted while waiting for the settling of the RC-filter. This should be seen in the context of 
much better signal accuracy. What we have learned from the above exercise is that one should strongly over-
sample a signal, if one wants to achieve high efficiency and high signal to noise. And, in addition, the use of a 
usually rather expensive high quality analogue Lock-In-amplifier becomes obsolete. Actually, there are com-
mercial digital Lock-In’s available, but they all do not use the scheme described above, consequently their 
performance should not be optimal. By the way, the method was implemented in the Gornergrat Continuum-
AOS, which was used for measuring broad-band continuum signals as well as a narrow-band signal of an 
external transmitter for the telescope surface alignment.  
 
 
  



56 
 

    Handling of noisy digital data 
 

Usually, when collecting data with some digitizing equipment, one rarely considers the economy of data stor-
age. The recent developments in digital technology make it look superfluous to think about eventual problems 
of storage capacity or redundancy of the data. But there are still some areas, where such considerations re-
main quite important like in space programs for example. The following paragraphs should help to make eve-
rybody become more aware of such problems and suggest eventually some ideas how to deal with them. By 
the way, resampling of data, as is discussed below, is also a tool to reduce any data amount to a bearable 
level. Quite often, the output of the instrumentation carries a lot of redundant information, which is not worth to 
be kept. 
 
 
    How to store noisy data 
 

For the calculation of the number of Bit required for the data storage and transmission of spectrometer data – 
in our case AOS data – which are subject to radiometric noise, one has to compare the maximum number of 
counts at the longest desired integration time versus the minimum absolute noise at minimum integration time 
and minimum signal level. For this the desired limit for an eventual noise increase due to digitization has to be 
defined. Her and in the following we assume that the relative noise level on all data is constant, so that the 
amplitude of the fluctuations is directly proportional to the mean signal level. 
 

It is well known that the digitization error of an ideal ADC is given by (see also above): 
 

          𝛿 =   1 √12  𝐿𝑆𝐵⁄  
 

(We neglect here the DNL-problems of ADCs.) For a given digital resolution the total noise relative to the radi-
ometric noise level is then given by: 
 

        𝛿𝑠 =   �1 + 𝑥2 12⁄  
 

with x the ratio of digital resolution (1 LSB) and the noise rms. δs may be for example 1.02 (2% noise in-
crease) and x becomes in this case 1/√2 = 0.707 (one count of the ADC corresponds to 70.7% of the rms). 
 

According to the radiometer equation the noise amplitude of the signal is: 
 

        𝛿𝑆 =   𝑆 �𝐵𝐹𝑙 ∙ 𝑡𝐼𝑛𝑡⁄  
 

BFl is the fluctuation bandwidth of the spectrometer pixel. The total signal S is comprised of n read-outs of a 
CCD in an AOS for example, each integrated with a "frame time" t0  (t0 = 0.01 sec in our case). The integration 
time tInt is therefore given by: 
        𝑡𝐼𝑛𝑡  =   𝑛 ∙ 𝑡0 
 

The signal S is co-added from n read-outs, so that we have: 
 

        𝑆 =   𝑛 ∙ 𝑠 =   𝑛 ∙ 𝛼 ∙ 𝑠𝑀𝑀𝑥 
 

with  sMax =  2p – 1  the maximum number of counts per frame time provided by the ADC (p Bit), and α the in-
put level to the ADC relative to sMax. The spectrometer shall be used within a dynamic range D, so that the 
minimum drive level α is then: 
 

      𝛼𝑀𝑖𝑛  =   1 𝐷⁄ . 
 

The minimum signal allowed is therefore: 
 

       𝑆𝑀𝑖𝑛  =   𝑛𝑀𝑖𝑛 ∙ (2𝑝 − 1) 𝐷⁄   with nMin the assumed minimum number of read-outs 
 

With this we have for the minimum noise amplitude: 
 

      𝛿𝑆𝑀𝑖𝑛  =   𝑛𝑀𝑖𝑛 ∙ (2𝑝−1)
𝐷

/�𝐵𝐹𝑙 ∙ 𝑡0 ∙ 𝑛𝑀𝑖𝑛 
 

The required digital resolution is equal to x*δSMin in order to achieve the desired total noise level.  
 

The maximum number of counts SMax is given by the maximum number of read-outs nMax times the maximum 
of ADC counts: 
 

      𝑆𝑀𝑀𝑥  =   𝑛𝑀𝑀𝑥 ∙ (2𝑝 − 1)   with   𝑛𝑀𝑀𝑥  =   𝑡𝑀𝑀𝑥/𝑡0, tMax is the assumed maximum integration time. 
 

This value as well as the noise of the minimum signal must both be described by a predefined maximum 
number of Bit. We have therefore for the required dynamic range of the digital data representation:  
 

    𝑙 =   𝑆𝑀𝑀𝑥 𝛿𝑆𝑀𝑖𝑛  =   𝑡𝑀𝑀𝑥 𝑡𝑀𝑖𝑛⁄⁄ ∙ 𝐷
𝑥

∙ �𝐵𝐹𝑙 ∙ 𝑡𝑀𝑖𝑛  =   𝑡𝑀𝑀𝑥 �𝑡𝑀𝑖𝑛⁄ ∙ 𝐷
𝑥

∙ �𝐵𝐹𝑙  =   𝑛𝑀𝑀𝑥 �𝑛𝑀𝑖𝑛⁄ ∙ 𝐷
𝑥

∙ �𝐵𝐹𝑙 ∙ 𝑡0. 
 



57 
 

The number of required Bit to describe all possible data values within the range SMin and Smax with sufficient 
accuracy is: 
 

          𝑚 =   log [𝑙] log [2]⁄  
 

It is interesting to note that the number of ADC Bit does not contribute here directly as long as the total num-
ber of Bit after co-adding is covering the whole range needed for the data representation. As an example we 
consider the Wide-Band-Spectrometer (WBS) of the Heterodyne-Instrument-for-the Infrared (HIFI) of the Her-
schel Satellite. The maximum integration time should be 160 sec, which makes nMax = 16000. BFl is 1.6 MHz, 
and t0 is 10 msec. We want to keep the increase in noise at 2% maximum, thus we have x = 0.707. The dy-
namic range of the WBS Acousto-Optical-Spectrometer is expected to be 13 dB so that D is 20. The minimum 
integration time is assumed to be 80 msec, and we find for the required number of Bit: 
 

          𝑚 =   𝑙𝑙𝑔�160/√0.08 ∙ 20 0.707⁄ ∙ √1.6 ∙ 106� 𝑙𝑙𝑔[2]  ≈  24�  
 

This means that 24 Bit are sufficient to describe all possible data values of WBS within the given dynamic 
range and for integration times between 0.08 and 160 seconds. Given a 16 Bit ADC the lowest 6 Bit of the 
accumulated data (or of the ADC output) can be truncated without risking a significant degradation of the data 
accuracy. (This does not mean that a 10-Bit ADC would be sufficient, because the DNL problems would be-
come very significant.) For integration times between 0.02 and 80 seconds the same number of Bit is appro-
priate, but in this case the lowest 5 Bit must be truncated. It is interesting to note that the ratio of maximum 
and minimum integration time becomes larger for smaller nMax! 
 

The example of the HIFI spectrometer demonstrates how an efficient data handling can be established on the 
basis of the noise amplitudes of the data. The procedure is not limited to spectrometer data, but any other se-
quence of noisy data from an infrared detector for example can be treated similar.  
 
 
    Reduction schemes for noisy data 
 

     Introduction 
 

It is one of the very important and difficult tasks in space or on ground to deal with the typically overwhelming 
amount of data generated on the course of the lifetime of an experiment. For this it is essential to develop 
compression schemes which are designed for the particular data structure in the experiment. The situation is 
rather special in case of spectral investigations at radio-frequencies, because the major content of the data is 
white and uncorrelated noise. This prohibits in principal any effective compression scheme, but, on the other 
hand, the noisy character of the data may suggest considering data transmission and data storage with 
slightly reduced signal to noise characteristics so that more efficient compression algorithms might become 
applicable. 
 

The typical situation in radio-astronomy is that data are generated at rather high speed in a multi-channel real 
time spectrometer with sometimes several thousand channels in parallel. On a satellite, the data provided by 
the back-ends should be stored in rather small time segments in order to achieve highest data reliability in 
case some data become affected by radiation effects for example. If single small scans are degraded, it then 
would not hurt too much to throw one scan away. On the other hand, smaller time segments require more 
storage volume, therefore some reasonable compromise or data compression algorithms must be found. Most 
compression algorithms are based on some kind of subtraction scheme, so that only the changes of the data 
from one scan to the next are stored. This increases the risk of data loss, because any signal distortion in one 
data set destroys the following and therefore dependent data as well. Therefore there are limits for the maxi-
mum compression efficiency. 
 
 
    Direct Compression 
 

As a first estimate for the amount of Bit needed to transmit one complete set of spectrometer data we need to 
define the minimum amplitude resolution to establish a reliable representation of the radiometric noise. From 
the radiometer equation we know that the rms of the fluctuations is given by: 
 

        𝑙𝑚𝑠𝑅𝑀𝑑  =   <𝑥>
�𝐵𝐹𝑙∙𝑡𝐼𝑛𝑡

 
 

with <x> the mean of the data x, BFl the "fluctuation bandwidth", and tInt the integration time. The minimum rms 
we get at the minimum power level applied to the spectrometer (the minimum of <x>), which is defined by the 
required dynamic range of the spectrometer. If D is the dynamic range (e.g. 13 dB, D = 20), we have: 
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        𝑙𝑚𝑠𝑀𝑖𝑛  =   <𝑥𝑀𝑖𝑛>
�𝐵𝐹𝑙∙𝑡𝐼𝑛𝑡

  =   1
𝐷

∙ <𝑥𝑀𝑀𝑀>
�𝐵𝐹𝑙∙𝑡𝐼𝑛𝑡

   

 

In order to resolve these fluctuations sufficiently, the LSB (Least-Significant-Bit) of the digital representation of 
the data should correspond to some fraction of the rms of the original data. The resolution of the analogue to 
digital conversion is therefore determined for example by: 
 

            𝐿𝑆𝐵 =   𝑙𝑚𝑠𝑀𝑖𝑛 √2⁄   
 

This estimate corresponds to an additional sampling noise of 
 

      𝜎𝑆𝑀𝑚𝑝
2  =   � 1

√2
∙𝑡𝑚𝑠𝑀𝑖𝑛/√12�

2
=  [0,204 ∙ 𝑙𝑚𝑠𝑀𝑖𝑛]2,  

 

since it is well known that the digitization noise is 1 LSB/√12 (see above). Thus, with this digital resolution we 
would have an increase of the total noise at minimum signal level like: 
 

         𝑙𝑚𝑠𝑡𝐵𝑡  =   �𝜎𝑅𝑀𝑑
2 + 𝜎𝑆𝑀𝑚𝑝

2  =   �1 + ∙1/24 ∙ 𝑙𝑚𝑠𝑅𝑀𝑑  =   1.0206 ∙ 𝑙𝑚𝑠𝑅𝑀𝑑   
 

A 2% increase of the noise is probably acceptable in most cases, and it should be kept in mind that for higher 
signal levels it becomes less. Due to the unavoidable quantization noise it is inevitable that with digitization of 
analogue data one has to accept some increase in noise anyway, how much can be determined and is a key 
question for the compression algorithms. For a correct understanding of the treatment of compression and 
related issues, this effect should always be included in order to obtain a reasonable idea about the conse-
quences of "added" noise when digitizing analogue signals. 
 

The maximum digital value MMax of the data becomes now: 
 

           𝑀𝑀𝑀𝑥  =   <𝑥𝑀𝑀𝑀>
𝐿𝑆𝐵

 =   𝐼𝑛𝑡�2 ∙ 𝐷 ∙ �𝐵𝐹𝑙 ∙ 𝑡𝐼𝑛𝑡�     
 

For WBS of the HIFI-instrument on Herschel we have a fluctuation bandwidth per pixel BFl ≈ 1.6 MHz, which 
corresponds to about 1 MHz resolution bandwidth. Desirable is a data dump every, say, 5 seconds. This im-
plies that the data must be stored with 17 Bit accuracy according to above equation. The resulting number of 
Bit to describe the 8 GHz total bandwidth at Nyquist sampling with 1 MHz resolution is therefore  
 

             𝑁𝐵𝑖𝑡 =  𝑙𝐵𝑔[𝑀𝑀𝑀𝑀]
𝑙𝐵𝑔[2]

∙ 8 ∙ 2000 =   272 𝑘𝐵𝑖𝑡  in 5 seconds or 
 

             𝑛𝐵𝑖𝑡  =   𝑁𝐵𝑖𝑡
𝑡𝐼𝑛𝑡

 =   54.4 𝑘𝐵𝑖𝑡/𝑠𝑅𝑐  
 

This is certainly far too much for the storage capabilities on a satellite like HERSCHEL because it would result 
in about 4,7 GBit data per day which would have to be stored and, even more problematic, to be down-linked 
to ground in preferably within very short time slots. Therefore all possibilities for data compression need to be 
implemented. 
 

Some improvement can be achieved by applying a fit to the shape of the spectrum using some set of simple 
orthogonal polynomials or other orthogonal functions (low order coefficients of a Fourier transform for exam-
ple, as was used during the SWAS mission). It is then sufficient to transmit the fit parameters and the differ-
ences of the data to the fit need to be handled only. Depending on the accuracy of the fit the compression can 
become very significant, but the details of the spectra will decide how much improvement is really possible. 
The polynomials chosen may be some specially defined "discrete polynomials" 8. In principle, this method can 
be practically "loss-less", if no reduction of Bit is applied, but compression with some reduced signal to noise 
may also be considered. 
 
 
    Ratio Data 
 

It is one of the frequently used procedures when applying compression to consider the differences of contigu-
ous sets of data in case the expected changes of the data are marginal. In case of radiometric noise, the 
noise fluctuations of such differences will vary with varying gain of the different frequency pixels of a spec-
trometer. This is not a very good starting point for a simple and efficient compression algorithm, since the 
number of required Bit to represent these fluctuations is not uniform across the bandwidth of the spectrome-
ter. The situation may be different, when considering data from an infrared detector which are typically detec-

                                                           
8  see e.g. Handbook of Mathematical Functions, M.Abramowitz and I.A.Stegun, Ninth Printing, Orthogonal Polynomials 

of a Discrete Variable, p.788 
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tor-noise limited and not influenced by the signal level itself. In such cases differences of adjacent scans 
would always have the same rms so that an efficient compression using differences may be rather successful. 
 

The way how radio-astronomical data usually appear offers some alternative approach. In general, one wants 
to split all data into small chunks in order to reduce the danger loosing too much information if some glitches 
occur from time to time. For example, during total power measurements with a telescope (differences of On- 
and Off- integrations on a signal- and a reference-position) we can expect that we have to integrate for, say, 
60 seconds on each position in order to deal with the rather slow slew capabilities of the telescope or, even 
worse, of a spacecraft. 60 seconds can be composed of twelve 5-second scans for example. During this inte-
gration we do not expect to see a significant change of the signal amplitude, if only radiometric noise is in-
volved. This can (and must) be verified by the spectroscopic Allan variance plot or similar. If the plot is still in 
the regime with a slope of -1 during 60 seconds integration time, we know that there are no other significant 
signal fluctuations than those described by the radiometer equation. Under this assumption it is sufficient to 
transmit the full data amplitude of the first scan, and afterwards, only the differences to the first scan need to 
be stored. 
 

The transmission of differences of data has the disadvantage that the noise to be resolved is dependent on 
the signal level on each of the pixels which might vary by much more than 3 dB. It is therefore much better to 
provide the data of the ratios of scans, because the rms of the fluctuations will then be more or less constant 
and independent on the actual signal level. For this it is assumed that the "zero-level" of the spectrometer 
output is already subtracted, which may be an important requirement. Thus let us assume that we calculate 
the ratio of two spectra pixel by pixel: 
 

          𝑙𝑞(𝑛)  =   𝑥𝑞(𝑛)
𝑥𝑞(1)

,   𝑛 = 2,3, … 𝑁  
 

q indicates the pixel number of the spectrometer (1 ≤ q ≤ Q), and n the sequence of the 5-second scans. xq(1) 
is the first scan in a sequence. All the values of rq(n) will be non-negative since the fluctuations of the initial 
data cannot lead to negative power whatsoever.  
 

x1 and x2 may have the same mean values, but this is not essential for the discussion. We assume that both 
data xi have the same relative statistical distribution, therefore we describe the relative variance of both data 
with 
 

         < (𝑥𝑖 − 〈𝑥𝑖〉)2 > 〈𝑥𝑖〉2  =  ⁄ 𝑙𝑚𝑠𝑅𝑀𝑑
2 〈𝑥𝑖〉2⁄  =   𝛿𝑅𝑀𝑑

2    𝑖 = 1,2. 
 

δRad is assumed to be small as is normal for data with radiometric noise. We want to represent the ratio r by 
numbers m, which guarantee that the resolution is sufficient for the noise fluctuations of r in units of fractions 
of δRad. Usually r is on average equal to “1”, but its digital representation by m should be larger in order to pro-
vide sufficient resolution. We write: 
 

        𝑙 =   𝑚 ∙ 𝛿𝑅𝑀𝑑/𝑞 
 

We therefore describe r by multiples of fractions of δRad as defined by q, and the result m should represent 
now the ratio r.  
 

The variance of the new variable m is now: 
 

             𝜎𝑚
2  = < (𝑚 − 〈𝑚〉)2 >   =   𝑔2 ∙ 𝑞2     

 

   with   𝑔2  =   <(𝑡−〈𝑡〉)2>
𝛿𝑅𝑀𝑅

2  =   𝜎𝑟
2

𝛿𝑅𝑀𝑅
2   

 

For small noise amplitudes of the data xi, we find for σr
2: 

 

   𝜎𝑡
2  =   〈�〈𝑥1〉+𝛿𝑥1

〈𝑥2〉+𝛿𝑥2
�

2
〉 −  〈〈𝑥1〉+𝛿𝑥1

〈𝑥2〉+𝛿𝑥2
〉2  ≈   �〈𝑥1〉

〈𝑥2〉
�

2
∙ 〈��1 + 𝛿𝑥1

〈𝑥1〉
� ∙ �1 − 𝛿𝑥2

〈𝑥2〉
��

2
〉  − 〈�1 + 𝛿𝑥1

〈𝑥1〉
� ∙ �1 − 𝛿𝑥2

〈𝑥2〉
�〉2   ≈ 

 

         ≈    〈𝑙〉2 ∙ �〈�𝛿𝑥1
〈𝑥1〉

�
2

〉 + 〈�𝛿𝑥2
〈𝑥2〉

�
2

〉�   =    2 ∙ 〈𝑙〉2 ∙ 𝛿𝑅𝑀𝑑
2   =    2 ∙ 𝛿𝑅𝑀𝑑

2    
 

            for uncorrelated x1 and x2, < x1> = <x2 >  and  δRad « 1 
 

The δxi are the fluctuations around <xi>. (By the way, the expectation of <r> =  <(x1/x2)> is not exactly identi-
cal with the value of <x1>/<x2>, but in our case the difference is negligible.) Therefore, we find that g is equal 
to √2. 
 

The probability distribution of m is now given by a Gaussian distribution: 
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       𝑤(𝑚) ∙ 𝑑𝑚 =   1

�2∙𝜋∙𝜎𝑚
2

∙ 𝑅𝑥𝑒 �− (𝑚−<𝑚>)2

2∙𝜎𝑚
2 � ∙ 𝑑𝑚  

 

For a digital representation of the signal we consider only the (rounded) integer values of m. The probability to 
find m within an interval of the width 2p (-2p-1 ≤ m-<m> ≤ 2p-1) is now given by: 
 

             𝑤𝑝  =   
1

�2 ∙ 𝜋 ∙ 𝜎𝑚
2

∙ � 𝑅𝑥𝑒
<𝑚>+2𝑝−1

<𝑚>−2𝑝−1

�
(𝑚−< 𝑚 >)2

2 ∙ 𝜎𝑚
2 � . 𝑑𝑚 =   𝑅𝑙𝑓 �

2𝑝−1

𝑞 ∙ 𝑔 ∙ √2
� 

 

(erf{x} is the “Error-function” as is defined in many textbooks.) In our case we have g = √2 (see above) and 
therefore: 
 

         𝑤𝑝(𝑙) =   𝑅𝑙𝑓{2𝑝−2 𝑞⁄ }    
 

With q = √2 we get now: 
 

         𝑤𝑝(𝑙)  =   𝑅𝑙𝑓�2𝑝−5/2� 

 

From this we have now the probability to find the actual value of rq(n) within the assumed interval: 
 

        𝑤𝑝{−2𝑝−1 ≤  𝑚 − 〈𝑚〉  ≤  2𝑝−1}  =   𝑅𝑙𝑓�2𝑝−5/2�. 
 

The values of wp = erf{2p-5/2} are given in the following table. 
 

It is obvious that the data are practically described perfectly well using only four Bit. But, in case of the Her-
schel-HIFI AOS each of the spectrometer scans is already made of Q = 16,000 pixel data, thus we have to 
define the probability that a complete data set can be stored with a limited but fixed number of Bit. 
 

 
Number of Bit p wp 

2 0.6827 
3 0.9545 
4 1-6.333·10-5 
5 1-1.244·10-15 

 
In order to find such probabilities we have to calculate the Qth power of the single data probability, in order to 
obtain the probability that all Q data are sufficiently resolved with p Bit at the same time. 
 

Number of Bit p        wp
Q  (Q = 16,000) 

2 0 
3 0 
4 0.363 
5 1-2∙10-11 

 
Thus, it is evident that the probability to transmit 16,000 pixel data as ratios correctly with 5 Bit is extremely 
close to 100%. There is a 36.3% chance that already four Bit are sufficient, but for safety reasons one should 
stay with 5 Bit. From this we can conclude that we need for one total power scan with 60 seconds integration 
time on the average a total of maximum 
 

                NTotal   =   16,000 · (1·17 + 11·5)  =  1.15 · 106 Bit per position. 
 

The first 17 Bit in the bracket are needed for the first scan (see above). This results to 
 

                  nTotal  =   NTotal / tInt  =  1.15 · 106 / 60  =  19.2 kBit/sec 
 

The exact value of <r> is also needed for the recovery of the initial data, which adds a few more Bit. To im-
prove the data quality one might use a smaller fraction q of the rms than assumed above, but the gain in accu-
racy is quite marginal. The 2% additional noise is probably already negligible for nearly all applications. 
 

The scenario described before assumes that all 16,000 AOS pixel data are transported as one string with 
identical number of Bit per Pixel. As is easily found, it is not really advantageous to adjust the number of Bit 
for each of the transmitted data values, since the transmission of the Bit information will consume more Bit 
than the eventual saving could possibly provide. Normally, one has to consider the possibility of glitches once 
in a while. If one expects them more frequently, the scheme can easily be converted for smaller sub-portions 
of data. This has the advantage that a lower number of Bit may be sufficient for several of the smaller sub-
portions, but it complicates the handling. Nevertheless, one should consider these problems early enough in 
order to be prepared for such unfavorable situations. Similar, "Zero-" and "Comb-" measurements, as they are 

Table [4]: 
 

Probability of full representation 
of spectrometer data with p Bit. 

Table [5] 
 

Probabilities for 16,000 spectro-
meter pixels using p Bit. 
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needed for the correct interpretation of AOS-spectra for example, must also be included in this calculation, 
which needs another amount of additional Bit, but it is not very likely that these numbers become very signifi-
cant. 
 

Since we have set the rms of the ratios to √2·LSB, the number of Bit needed for each of the sub-scans be-
comes independent on the value of the fluctuation bandwidth or even the integration time used, which is ra-
ther surprising. Therefore, the compression efficiency is the same for any resolution of the spectrometer. In 
order to have 100% data reliability, it is important that each of the transmitted data sets has the mean of the 
ratio <r(n)> and the actual number of Bit for the following values as leading data included, which adds another 
20 Bit per scan or so. 
 

The ratio-method described before was proposed for the data handling of the HIFI data on Herschel, since the 
normal amount of generated data on board was already more than the down-link capacity could provide. Fi-
nally the decision was made not to apply it, since the method was not yet well approved. Instead it was de-
cided to reduce the amount of data by neglecting obviously unnecessary information. Nevertheless, intensive 
and successful tests were performed as proof for the reliability of the algorithm. 
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III. About “Radiometric Noise” 
 

In radio-astronomy the noise at the output of a heterodyne receiver system is determined by the so called 
“fluctuation bandwidth” BFl as is used in the well-known “radiometer equation”. It is not directly understanda-
ble, why the fluctuation bandwidth is different from the so called “resolution bandwidth” δRes, which stands for 
the resolution capability of the system. In order to clarify this, the following paragraph should provide a con-
sistent derivation of the radiometer equation together with some further analysis.  
 

For the detection of RF in a receiver one usually uses a detector with quadratic response, the output is there-
fore proportional to the average of the square of the input voltage. This is true for RF-detectors as well as op-
tical detectors like a CCD in an acousto-optical spectrometer (AOS) for example. The number of generated 
photo electrons is proportional to the average power of the incident light, i.e. to the square of the amplitude of 
the incident radiation field. (The situation is different with a standard rectifier, since it provides a voltage pro-
portional to the absolute value of the AC-signal. We will not discuss this here because it does not provide any 
new insight into the matter.) 
 

Consider a „simple“ apparatus for the detection of radio signals: 
 

 
 

The RF-signal s(t) represents „white noise“, which is characterized by the correlation function 
 

 )()()()( 0 τδττ ⋅Γ=>+⋅<= ttstsG  
 

Usually, the amplitude s(t) itself cannot be described by a simple analytical function. We therefore have to 
deal with the correlation function. 
 

In a spectrometer, the RF is filtered by a narrow-band filter; there may exist several hundred to a couple of 
thousands of such filters each operating at different frequencies. The function of the filter is characterized by 
the (real valued) filter function L(f), which is defined for non-negative frequencies only. The center frequency 
of the filter we call f0. 
 

The so called „resolution bandwidth“ of the filter δRes is the width of an equivalent box-car filter, which transmits 
the same power as the real filter. Its peak transmission is identical with the peak transmission of the real filter. 
We therefore define: 

 
Max

s L

dffL∫
∞

⋅

= 0
Re

)(

δ         [31] 

This width has nothing to do with the “FWHM” (Full Width at Half Mean) of the filter, as is frequently used in 
RF-technology. This 3-dB width is a bit problematic when comparing different filters, because it does not 
characterize eventual broad and flat wings of a filter curve. Therefore, any information, which does not include 
some information about such wings, is not very useful. This is the reason why we generally use the resolution 
bandwidth as one, but not the only filter parameter. 
 

Frequently, the so called “Rayleigh criterion” is also used for the description of the resolution of an optical 
spectrograph for example. It describes two monochromatic Frequency components as „resolved“, if the dif-
fraction maximum of one component is coincident with the first zero of the diffraction pattern of the second 
component. The diffraction pattern is simply the square of a Sinc-function. The sum of the two patterns of 
equal strength results in a curve with two maxima with a valley in between at a power of 81% (=8/π2) of the 
maxima. In a more generalized picture this value may be used for a characterization of the resolution even if 
there are no diffraction minima visible. This is a rather artificial construction, and we therefore are not going to 
use it either. 
 

The quadratic detector delivers a DC voltage as well as high frequency components, as we can see when 
squaring a single carrier signal. 
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Only the DC- component is of interest here. (We are using the frequency f instead of the circular frequency ω 
because it removes some of the nasty constants in the following formulas.) The subsequent averaging makes 

s(t) 
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L(f) s’(t) 
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s‘2(t) x(t) 

Averager 
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the high frequency component disappear anyway. Usually we have to consider a full conglomerate of various 
frequency components. In this case we also get slowly varying components as mixing products due to the 
quadratic detection scheme. This we can see easily when considering the detection of two monochromatic 
signals. 
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The high frequency Cos-terms in the brackets are equivalent to the frequency doubling term above and are 
therefore not relevant. The first Cos-term in the last bracket is at low frequency if both carrier frequencies are 
close enough to be passed by the filter. There are many of such difference frequencies, if the signal consists 
of many individual components, which give rise to relatively slow fluctuations at the detector output. If the in-
put is white noise, these fluctuations will also be erratic. The maximum difference frequency is determined by 
the width of the filter. By the way, one should be aware of the fact that a real quadratic detector does not exist. 
Usually one is dealing with a diode which has on one arm of the current to voltage plot (I-V-curve) the quad-
ratic response, but on the (normally negative) arm the response is zero. It is therefore only “half of a quadratic 
detector”. Certainly, when applying a bias voltage, one can generate the situation of a simple quadratic re-
sponse, which makes use of the local non-linear curvature of the I-V-curve of the device, but this is not exactly 
a quadratic behaviour in the classical sense. Nevertheless, the real detector characteristics do not change the 
following arguments.  
 

Generally, one is not interested in these fluctuations, but instead in the average of the detector output. The 
fluctuations determine now the signal to noise ratio of the detected signal, which is mainly determined by the 
width of the filter. The averaging at the end reduces the fluctuations again, and we describe the averaging by 
the function of a box-car integrator: 
 

                      𝑠′(𝑡)  =   
1
𝑇

∙ � 𝑠(𝑡′) ∙ 𝑑𝑡′
𝑡

𝑡−𝑇

 
 

T is the integration time if the integrator, and, by dividing by T, we get the average of the signal within the time 
interval T. A different averaging, for example by means of an RC-filter, could also be discussed, but is not of 
much interest right now. 
 
 
    The Radiometer Equation 
 

We now want to deduce the noise performance of a receiver system as is plotted above. The incident signal 
voltage s(t) is modified when passing through the filter. In order to describe the function of the filter we intro-
duce the Fourier transform of the signal of s(t): 

 ∫
∞

∞−

⋅⋅= dfiftfuts ]2exp[)()( π    and   ∫
∞

∞−

⋅−⋅= dtifttsfu ]2exp[)()( π   [32] 

(The existence of the integral requires that the integral over the absolute value of s(t) exists, which requires 
that the integration interval should be limited. If s(t) represents white noise, we need to introduce “band-lim-
ited” white noise which has an upper cut-off frequency. But this has practically no influence on the following 
discussion. It should also be clear that the Fourier transform of s(t) is not a regular and analytic function, since 
for example the phases of u(f) are completely random. When using the real valued Sin- and Cos-Fourier 
transforms, it means that they are completely undefined.) We are using here the complex Fourier transform, 
and, since the signal voltage is supposed to be real, we have9 
 

 )()( * fufu =− . 
 

Behind the filter we get now the new signal voltage 

    ∫
∞

∞−

⋅⋅⋅= dfiftfufAts ]2exp[)()()(' π  

                                                           
9  If one prefers to deal with real numbers only, then we have:  u(-f) = u(f)  and  s(-t) = s(t)  and one can also write: 
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A(f) is the amplitude filter function of the filter, which may be a complex function. (The connection between 
A(f) and the power transmission function L(f) of the filter will be introduced further down.) The quadratic de-
tector now delivers the low frequency part as 
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When averaging we get then: 
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Of interest is now only the expectation value of the output voltage, which we are indicating by brackets “<>”. 
We are not going to average over time, but instead, we are averaging over the “ensemble”. This means that 
we understand the signal voltage s(t) as the result of the contributions of many individual oscillators, all oscil-
lating with different phases and/or different frequencies. We can write therefore: 
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The average is to be taken only over the noise amplitudes u(f) and not over the filter amplitudes A(f), since 
they do not contribute anything to the statistics. We can separate u(f) into the absolute value │u(f)│ and the 
phase factor exp(iφ). Since the phases φ are completely random, the average over the ensemble can only 
deliver a non-zero result, if the phases of u(f) and u*(f’) are conjugate identical, i.e. if f = f’: Thus we have: 
 

                < 𝑋(𝑡) >  =  < 𝑠′2(𝑡) >  =   � |𝐴(𝑓)|2 ∙< |𝑢(𝑓)|2 >∙ 𝑑𝑓
∞

−∞

 

 

The result of the ensemble average is independent on the time t, as is to be expected. If we deal with white 
noise, the spectral power <│u(f)│2> should be independent on frequency. We therefore set <│u(f)│2> = c and 
write 
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In reality we are using non-negative frequencies only, thus we should find the connection between A(f) and 
L(f), and we have: 

 222 )(2)()()( fAfAfAfL ⋅=−+=       [33] 
If we use the definition of the resolution bandwidth, and if we call ρin the spectral power density (= power per 
frequency interval), then we can write: 
 

 < 𝑋(𝑡) >  =   < 𝑠′2(𝑡) >   ~   𝐿𝑀𝑀𝑥 ∙ 𝜌𝐼𝑛 ∙ 𝛿𝑅𝑡𝑠  and  < 𝑠2(𝑡) >  ~  𝜌𝐼𝑛 ∙ 𝛿𝑅𝑡𝑠 
 

Thus we have:   c  ~  ρIn. ρIn∙δRes is the mean input power within the bandwidth of the filter, and LMax∙ρIn∙δRes 
stands for the input power as is transmitted through the filter. Here one can see the purpose of the definition 
of the resolution bandwidth as the width of an equivalent box-car filter, which transmits the same power as the 
real filter. In case the spectral power density at the input side can be assumed as constant within the filter 
width the formula is precisely valid even if we do not deal with white noise.  
 

For the derivation of the expected noise we have to evaluate the variance of the signal 
 2222 )()(])()([)( ><−><=>><−<= tXtXtXtXTσ  
The expectation value of <X(t)> we know already; left is the calculation of <X2(t)>. For this we have: 
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The average over the phases of u(f) can only be non-zero if either f2 = f1 and f4 = f3, or f3 = f1 and f4 = f2, or f4 = 
-f1 and f3 = -f2. (The last follows from u*(f) = u(-f).) We therefore get three terms 
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The integration over the first term in the brackets over time is trivial, the second delivers with x = f1-f2: 
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The second integration over time results in the conjugate complex. Thus we get now: 
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Is the averaging time T large enough, i.e. if T » 1/δRes, then the second term in the brackets approaches a 
definition of the Dirac Delta-function: 
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This means that │A(f2)│2 should not significantly differ from │A(f1)│2 at a frequency separation of  │f1-f2│ ≤ 1/T. 
We get then 
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If we go now to non-negative frequencies, we can replace 
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and we get for non-negative frequencies: 
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The first term is identical with the square of the average detected power, and we get therefore for the vari-
ance:  
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The constant c we can replace 
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and we finally get the famous “radiometer equation”: 
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 [34] 

<P(f)> is the power as is transmitted through the filter with width δRes. BFl is called the “fluctuation bandwidth” 
and it describes the width of an equivalent box-car filter, which transmits the same fluctuations as the actual 
filter. The larger BFl, the smaller are the resulting fluctuations. BFl is not identical with the resolution bandwidth 
δRes, although it is frequently used for an estimate of the expected noise of a radio receiver. In principle this is 
incorrect. Both definitions, the resolution bandwidth and the fluctuation bandwidth together provide much bet-
ter insight into the properties of the filter, because, for example, extended wings will make the fluctuation 
bandwidth very different from the resolution bandwidth, whereas a filter with rectangular shape makes them 
identical. 
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    Relation between fluctuation and resolution bandwidth 
 

Considering the fact that the power transmission curve L(f) never can be negative we can assume that 
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Consequently we can write: 
 

              ∫ 𝐿2(𝑓) ∙ 𝑑𝑓∞
0   =    𝐿𝑀𝑀𝑀

𝜅
∙ ∫ 𝐿(𝑓) ∙ 𝑑𝑓∞

0    with  κ  ≥ 1 
 

This leads to:   𝐵𝐹𝑙 =  𝜅 ∙ 𝛿𝑅𝑡𝑠 
κ can only be equal to unity, if the filter function has one or several box-car shaped structures and is zero oth-
erwise. In all other cases κ is always larger than “1”! It is therefore some kind of a quality indicator for the filter. 
The smaller κ the “better” is the filter.  
For a single pole filter (simple LC circuit) we have for example: κ = 2 
For a Gaussian filter we have:  κ = √2  =  1.414 
For digital and other correlators we have: κ = 1.5 
The Gaussian filter is therefore a “better” filter. In AOSs we deal approximately with a Gaussian filter, since 
the laser illumination of the Bragg-cell automatically is Gaussian, the Gaussian image on the CCD is superim-
posed with some wings caused by diffraction at the edges of the Bragg-cell. Large values of κ indicate that the 
filter function has large and extended wings, which certainly are not very advantageous. 
 

One should be aware of the fact that during broad-band reception one usually does not have well-defined filter 
curves. This is particularly true for direct detection receivers as well as for heterodyne receivers, which are 
used for continuum measurements. Typically one has to consider large gain variations in the band so that one 
finds relatively large values of κ. In narrow band applications one has typically values of κ between 1 and 2. 
 
 
    Very short averages 
 

Of interest is also, what happens at very short integration time T. The assumption of the Sinc2 function ap-
proaching the Delta-function is not valid anymore. We are therefore now investigating the case of  
 sT Re/1 δ>>  
In this case we have for practically all frequencies f1 and f2 within the filter curve 
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The variance is now: 
 2222 )(2)()()( ><⋅=><−><= tXtXtXTσ      [35] 
This result is very different from the usual radiometer equation! There is obviously a regime, where the above 
“radiometer equation” does not hold. We therefore need a more general expression. 
 
 
    The “True” Radiometer Equation 
 

Instead of applying a longtime integration with the final box-car integrator we can also determine how the in-
strument output will look like when using an arbitrary low pass filter instead of the integrator. The route to fol-
low is to define the spectral distribution of the detector output by means of the Fourier transform of the output 
correlation function. The product of this spectrum with the spectral characteristics of the final averager will 
then provide the final spectrum. When integrating over all frequencies we finally get the variance of the output 
fluctuations.  
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First we are therefore interested in the characteristics of the fluctuations of the signal x(t) at the output side of 
the detector. For this we evaluate the (not normalized) first order correlation function Γ(τ) of the output as a 
function of relative delay time τ, which is given by 
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Again, as before, we get a non-zero result only if either f2 = f1 and f4 = f3, or if f3 = f1 and f4 = f2, or if f4 = -f1 and 
f3 = -f2. Thus we have now: 
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Setting   µ = f2 – f1   we can modify this to 
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While replacing the first term in the brackets we get finally: 
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BFl is defined as above. The filter overlap integral Φ(µ) is unity at µ = 0 and smaller than 1 otherwise. It ap-
proaches zero when µ becomes much larger than the filter width δRes. The relation leads also to a different 
definition of the fluctuation bandwidth with: 
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The fluctuation bandwidth is therefore the integral over the overlap of the filter curve with itself. Since Φ(µ) 
may be called the “filter correlation function”, we can conclude that it represents the normalized spectral 
power density of the noise fluctuations of filtered white noise.  
 

The variance of the output fluctuations directly behind the detector is given by the value of Γ(0)-Γ(∞). Thus we 
have here 
 22 )(2 ><⋅= txxσ , 
since the integral of Φ(µ) over positive and negative frequencies equals 2·BFl. This is exactly the same result 
as has been found above (Eq.[35]) for the case of a large post-detection bandwidth.  
 

The Fourier transform of the correlation function Γ(τ) provides us now with the spectral distribution of the out-
put power of the detector as a function of the post-detection frequency F, which is proportional to the square 
of the detector current: 
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δ(F) is the Dirac delta function. The first term in the bracket describes the square of the DC-value of the cur-
rent, while the second is responsible for the current fluctuations.  
 

Usually there is also a post-detection filter behind the detector, which is characterized by an audio frequency 
amplitude transmission function b(f). The fluctuations behind this filter are then given by: 
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(Note that this relation is defined for both, negative and positive frequency components F. Note also that we 
talk about the square of the signal, i.e. the power, so that the absolute square of the post-detection filter func-
tion applies here.) When integrating this now over all frequencies, we get the variance of the current fluctua-
tions with 
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                        This is the exact formulation of the radiometer equation!  
 
In case the post-detection filter width is very small as compared to the pre-detection filter width, we can set 
Φ(F) equal to Φ(0) = 1 within the complete frequency range, where b(F) is non-zero, and we get finally: 
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For a box-car integrator b(F) is given by: 
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with T the integration time, so that the integral leads to a factor 1/T. In this case we end finally with the well-
known result: 
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This describes the standard case during all radio-astronomical observations and is usually considered as the 
radiometer equation, although it is only a special case of the general expression.  
 

With the above formulas it is now simple to calculate also the response of the system with other types of post 
detection filters. For example, for a simple RC-filter with time constant τ  the integral provides a factor of 
1/(2·τ), as long as this number is small as compared to the width δRes of the pre-detection filter. In other appli-
cations, such as the reception of audio signals with a telecommunication radio receiver for example, the post-
detection bandwidth is practically the same as the pre-detection bandwidth, and one has to evaluate the inte-
gral in Eq.[37] accordingly. (It typically approaches there a value of about 1·BFl.) The limiting case is reached 
at very large post-detection bandwidth, where one finds for the current fluctuations: 
 22 )(2 ><⋅= tXσ  
(This results from the fact that the integral over Φ(F) has a value of twice the fluctuation bandwidth in case b(f) 
is constant over the full range where Φ(F) is non-zero (see Eq.[36]). This result is independent on the actual 
shape of the pre-detection filter as well as on the full width of the post-detection filter! Since the mean post-
detection current is proportional to the pre-detection filter width, we have finally that the rms background noise 
is proportional to the square root of the resolution bandwidth in the radiometric case (since BFl ≈ δRes), and 
proportional to the resolution bandwidth itself in the case of commercial radio receivers. This is the decisive 
difference between the two cases as far as the noise is concerned. It follows that it should be advantageous to 
use small pre-detection filters for commercial receivers instead of narrow post-detection filters. The reason is 
that noise fluctuations distant from the reception frequency can contribute to the noise output, if the input filter 
width is large. They contribute also at small output frequencies, so that a small output filter does not reduce 
their contributions. It should be noted that the filters at the intermediate frequency in a heterodyne receiver are 
working like an input filter. Important is, that it also reduces the contributions of the noise provided by the input 
amplifiers. Therefore, in a good receiver one should first amplify the signal and mix then down to the IF fre-
quency, unless the noise produced at the input frequency is much higher than the noise generated at the IF 
frequency (including the mixer losses). 
 
 
    Determining the fluctuation bandwidth 
 

There exist two possibilities to determine the fluctuation bandwidth: The first is clear from the mathematics 
above. One measures the filter curve L(f) and evaluates the integrals as shown above. Both, the resolution 
bandwidth δRes and the fluctuation bandwidth BFl are found easily. The second possibility is to use the radiom-
eter equation. When measuring an Allan variance plot, the first part, which exhibits a slope of -1, should ex-
actly follow the radiometer equation. Thus, when using the value of the variance in this regime together with 
the mean value of the data, one can directly determine the fluctuation bandwidth.  
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When comparing the outcome of both methods, the results of BFl should be identical. But one should not for-
get that the spectrometer itself may generate additional noise, like the final detector, the CCD, does in an 
AOS. This will affect the statistical result but not the filter curve data. It might be interesting to determine such 
additional contribution from a comparison of both. If there is additional noise, the resulting fluctuation band-
width from the Allan plot will become too small! Experience shows that the two results should agree within a 
few percent. Otherwise there are problems in the spectrometer itself. 
 

Actually, the arguments here are not correct for Auto-Correlators, Digital Fourier-Transform Spectrometers, or 
Chirp-Transform Spectrometers. The assumption that the power response should always be non-negative is 
not fulfilled with these instruments. Therefore, the above formulas for the resolution as well as for the fluctua-
tion bandwidth do not apply! (See below.) 
 
 
    Noise of an analogue correlator 
 

Somewhat different is the situation when dealing with a correlator to measure spectra of radio sources. The 
scheme of an auto-correlator is shown below.  

    
To detect the auto-correlation of a signal at one particular delay-time τ the signal is split into two channels, 
one with delay τ, and the other without. Typically, the delay is done in a digital shift register, but an analogue 
technique, like e.g. in systems operating in the infrared or visible region, can also be applied. The calculation 
for the evaluation of the variance in such system one has to introduce the delay in the above formulas. One 
finds for the expectation of the correlation function: 
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(Remember that 𝐿(𝑓) = 2 ∙ |𝐴(𝑓)|2.) S(f) is the filtered power spectrum as is fed to the multiplier, which is 
proportional to the square of the Fourier transform of the signal function s’(t). At delay τ = 0 we have: 
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                c  =   g(0)
∫ L(f)∙df∞

0
   ~   𝜌𝐼𝑛 

 

g(0) is practically the power of the RF-signal, which is transmitted by the filter and is determined at delay zero. 
ρIn is the input spectral power distribution (see above). We can write now: 
 

                g(τ)   =    g(0) ∙
∫ L(f) ∙ cos[2π ∙ f ∙ τ] ∙ df∞

0

∫ L(f) ∙ df∞
0

                                                                                    [38] 
 

The delay-time dependent correlation function is therefore the normalized Fourier-transform of the filter-func-
tion at the input side. Eventual signals, as could be present in the signal, can be interpreted as part of the fil-
ter. g(τ) vanishes with increasing τ, the broader the filter function L(f), the faster it disappears. 
 

The expectation value of g2(τ), averaged over time T, is now found similar as above: 
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At long integration time T we have again: 
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With this we get finally after some manipulation: 
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The factor c we can replace again. If we use now the fluctuation bandwidth as known from the radiometer 
equation, then we find for the variance of the correlation function:  
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When considering the fluctuations of the power at the output of the correlator, we can also write: 
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     [39]  
 

with PIn the input power within the filter bandwidth. The standard deviation of the correlation function is there-
fore proportional to the power fed to the detector. The fluctuation bandwidth BFl is large in this case contrary to 
the situation with a filter-bank, since the bandwidth of the filter includes the whole band the correlator is work-
ing in. It is usually not much different from the full bandwidth of the filter. It is interesting that the expression 
leads for large delays to  
 

           σ𝑃
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2
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since the cos2(x) has an average of ½. This is found as well when considering white noise only, so that L2(f) = 
L0 = const. for all f < fMax. (Here and for the following we assume that the filter transmits up to a maximum fre-
quency fMax.) For τ=0 on the other hand one finds: 
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2
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Here the variance is twice as large as for long delays. But still, the fluctuations are rather small what requires 
that the electronics has to be very low noise! The resolution of a digital sampling electronics must resolve the 
low level noise at large delays with at least one Bit, but at high dynamic range for the detection of the zero-lag 
signal, which can be a difficult undertaking when considering very large bandwidth of the correlator. This is a 
particular problem for the frequently used one- or two-Bit digital correlators, because their resolution is not 
adequate for the needed accuracy of the zero-lag measurement. Therefore, these systems need an inde-
pendent method for the power measurement in order to provide the zero-lag information. This is one of the 
serious difficulties with so-called “Hybrid-Correlators”, where a broad band is split in several smaller bands 
covered by individual correlators which are operating at lower speed. To measure the power in all sub-bands 
with sufficient high accuracy is mostly nearly impossible. Therefore, the zero-offset in the spectra as derived 
by the Fourier-transformation is rather uncertain, so-called “platforming” becomes almost inevitable. 
 

There is one peculiar property of the correlator lags, as is the correlation between the lags. This is found by a 
rather similar method as in the above consideration. One has: 
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It looks like the Fourier-transformation of the square of the filter-function (with arguments τ1-τ2 and τ1+τ2).  

Since we have to assume that the filter-function L(f) is slowly changing within the input band, we expect only 
contributions at small τ, if any. This is obvious, if we assume a box-car shaped L(f) with L(f) = L0 in the band 0 
< f ≤ 1/2τ0. (τ0 is the increment between the time lags fMax = 1/2τ0 is the maximum frequency, the correlator 
can observe accordingly.) In this case the correlation is minimal and we get: 
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Together with fMax=1/2τ0  and τn = n·τ0 we find that the cross-correlation between all lags is zero! This is to be 
expected in case of pure white noise at the input side. But, if the input band is not uniform, this changes; the 
more there is structure, the more correlation appears. 
 
 
    The Spectrum 
 

With the correlation function g(τ) it is now straight forward to calculate the spectrum by means of a Fourier-
transformation. We have: 
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With a correlator with discrete samples one can replace the integral by the equivalent sum: 
 

       𝑆𝑐(𝑓)  =    𝜏0 ∙ � 𝑔(𝜏𝑛) ∙ e2𝜋i∙𝑓∙𝜏𝑛

𝑁

𝑛=−𝑁

  =    2 ∙ 𝜏0 ∙ � �1 − 1
2
𝛿𝑛,0� ∙ 𝑔(𝜏𝑛) ∙ cos[2𝜋 ∙ 𝑓 ∙ 𝜏𝑛]

𝑁

𝑛=0

        [41] 
 

τ0 is the (constant) delay difference of adjacent correlator lags, and g(τn) is identical for positive and negative 
arguments. We use “Sc(f)“ for the reconstructed spectrum in order to distinguish it from the input spectrum 
S(f). (It should be repeated again that the filter should not transmit above the maximum frequency fMax = 
1/2τ0.) The frequencies of the recalculated spectrum must also be within this range 0 < f ≤ fMax. Inserting g(τn) 
in the above sum one gets: 
 

                  𝑆𝑐(𝑓)  =   𝜏0 ∙ 𝑐 ∙ � 𝐿(𝑓′) ∙ �
sin [𝜋 ∙ (2𝑁 + 1) ∙ (𝑓′ − 𝑓) ∙ 𝜏0]

sin [𝜋 ∙ (𝑓′ − 𝑓) ∙ 𝜏0] +  
sin [𝜋 ∙ (2𝑁 + 1) ∙ (𝑓′ + 𝑓) ∙ 𝜏0]

sin [𝜋 ∙ (𝑓′ + 𝑓) ∙ 𝜏0] � ∙ 𝑑𝑓′

∞

0

 
 

To simplify things we introduce again negative frequencies and we can write: 
 

                  𝑆𝑐(𝑓)  =   𝜏0 ∙ 𝑐 ∙ � 𝐿(𝑓′) ∙
sin [𝜋 ∙ (2𝑁 + 1) ∙ (𝑓′ − 𝑓) ∙ 𝜏0]

sin [𝜋 ∙ (𝑓′ − 𝑓) ∙ 𝜏0] ∙ 𝑑𝑓′

∞

−∞

 
 

A problem is here again the denominator in the formula, since it generates an infinite number of poles. But we 
can replace the Sin-function in the denominator by: 
 

𝜏0 ∙
sin[𝜋 ∙ (2𝑁 + 1) ∙ (𝑓′ − 𝑓) ∙ 𝜏0]

sin[𝜋 ∙ (𝑓′ − 𝑓) ∙ 𝜏0]   =    
1
𝜋

∙ � (−1)𝑛 ∙
sin[𝜋 ∙ (2𝑁 + 1) ∙ (𝑓′ − 𝑓) ∙ 𝜏0]

𝑓′ − 𝑓 + 𝑛/𝜏0]

∞

𝑛=−∞

  =  
1
𝜋

∙ � ∙
sin[𝜋 ∙ (2𝑁 + 1) ∙ (𝑓′ − 𝑓 + 𝑛/𝜏0) ∙ 𝜏0]

𝑓′ − 𝑓 + 𝑛/𝜏0]

∞

𝑛=−∞

  
 

Thus we have: 

                   𝑆𝑐(𝑓)  =    
𝑐
𝜋 ∙ � 𝐿(𝑓′) ∙ �

sin�𝜋 ∙ (2𝑁 + 1) ∙ �𝑓′ − 𝑓 + 𝑛/𝜏0� ∙ 𝜏0�
𝑓′ − 𝑓 + 𝑛/𝜏0]

∙ 𝑑𝑓′   =
∞

𝑛=−∞

∞

−∞

 

 

                              =    
𝑐
𝜋

∙ � � 𝐿(𝑓′ − 𝑛/𝜏0) ∙
sin�𝜋 ∙ (2𝑁 + 1) ∙ �𝑓′ − 𝑓� ∙ 𝜏0�

𝑓′ − 𝑓
∙ 𝑑𝑓′ 

∞

𝑛=−∞

∞

−∞

 
 

(Here we have used that L(-f) = L(f).) If it is secured that L(f) outside the interval -1/2τ0 < f < 1/2τ0 is zero eve-
rywhere, then we can define again a “pseudo-function” Λ(f) with: 
 

    Λ(𝑓′)  =   𝐿(𝑓′ − 𝑛
𝜏0

)   with    (n-½)/τ0 < f’ < (n+½)/τ0,  n = 0, ±1, ±2, … 
 

By this we construct a periodic continuation of the initial input spectrum. Thus we write now: 
 

                   𝑆𝑐(𝑓)  =   
𝑐
𝜋 ∙ � Λ(𝑓′) ∙

∞

−∞

sin[𝜋 ∙ (2𝑁 + 1) ∙ (𝑓′ − 𝑓) ∙ 𝜏0]
𝑓′ − 𝑓 ∙ 𝑑𝑓′ 

 

With N large we can now replace 
 

     
1
𝜋

∙ sin�𝜋∙(2𝑁+1)∙�𝑓′−𝑓�∙𝜏0�
𝑓′−𝑓

   →    𝛿(𝑓′ − 𝑓) 
 

and we get: 
 

    𝑆𝑐(𝑓)  =   𝑐 ∙< 𝐿(𝑓) >  =  < 𝑆(𝑓) >. 
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<L(f)> is the average value of L(f) in the interval of width 1/[(N+½)·2τ0], and this is identical with the value of 
the input spectrum at the frequency f. (One should recognize that the observed frequency f should not lie out-
side of the filter width of L(f).) This proofs that the auto-correlator indeed reproduces the input spectrum. By 
the way, the effective frequency width of the reconstructed frequency pixel defines also that the number of 
available frequency pixels is identical with the number of lags of the correlator. 
 

In case the input spectrum consists of a single monochromatic line: S(f) = S0·δ(f-f0), then we find the answer 
of the correlator to such line with 
 

              𝑆𝑐(𝑓)  =   𝑆0 ∙ 𝑙(𝑓),     𝑙(𝑓)  =   𝜏0 ∙ sin [𝜋∙(2𝑁+1)∙(𝑓−𝑓0)∙𝜏0]
sin [𝜋∙(𝑓−𝑓0)∙𝜏0]

       [42] 
 

l(f) we call the “filter-function” of the spectrometer. The response is therefore a Sinc-function when neglecting 
the higher order poles of the Sin-function in the denominator, and it converts to a Delta-function at N very 
large.  
 

This expression is slightly unrealistic at finite N, since it becomes negative at (f-f0)·τ0 = -1/2, +3/2,…, but a 
power spectrum cannot be negative! Also some other aspects of the auto-correlator are not quite realistic. For 
example, the value of the resolution bandwidth becomes:  
 

                  𝛿𝑅𝑡𝑠   =    
1

𝑙𝑀𝑀𝑥
 ∙  � 𝑙(𝑓) ∙ 𝑑𝑓 =    

1
(𝑁 + 1/2) ∙ 2 ∙ 𝜏0

  =   
𝑓𝑀𝑀𝑥

𝑁 + 1/2

∞

0

 

 

This is exactly the width of a spectral pixel, which would suggest, that the response on each pixel is equivalent 
to a box-car shaped filter, but the Sinc-function represents a completely different filter-function. Consequently 
we have to state that the general definition of the resolution bandwidth does not provide a meaningful value 
for the frequency resolution of the correlator. 
 
 
    Noise of the spectrum 
 

If we are interested in the noise performance of the correlator we have to determine the value of the square of 
P(f). 
 

     < 𝛿𝑆𝑐(𝑓)2 >  =  < 𝑆𝑐(𝑓)2 >  − < 𝑆𝑐(𝑓) >2  = 
 

          =    
𝑐2

𝑇
∙ � � [< 𝑔(𝜏𝑛) ∙ 𝑔(𝜏𝑚) > −< 𝑔(𝜏𝑛) >∙< 𝑔(𝜏𝑚) >] ∙ 𝑅2𝜋𝑖∙𝑓∙𝜏𝑛 ∙

𝑁

𝑚=−𝑁

𝑁

𝑛=−𝑁

𝑅2𝜋𝑖∙𝑓∙𝜏𝑚 
 

Inserting now the expressions for g(τ) we obtain: 
 

  < 𝛿𝑆𝑐(𝑓)2 >  =   𝑐2

𝑇
∙ ∫ 𝐿2(𝑓′) ∙ 𝑑𝑓′ ∙∞

0 �sin�(2𝑁+1)∙𝜋∙�𝑓′−𝑓�∙𝜏0�
sin[𝜋∙(𝑓′−𝑓)∙𝜏0]

+  sin�(2𝑁+1)∙𝜋∙�𝑓′+𝑓�∙𝜏0�
sin[𝜋∙(𝑓′+𝑓)∙𝜏0]

�
2

  = 
 

                        =   𝑐2

𝑇
∙ ∫ 𝐿2(𝑓′) ∙ 𝑑𝑓′ ∙∞

−∞
sin2�(2𝑁+1)∙𝜋∙�𝑓′−𝑓�∙𝜏0�

sin2[𝜋∙(𝑓′−𝑓)∙𝜏0]
   →    𝑐2

𝑇
∙< 𝐿2(𝑓) >∙ (2𝑁 + 1) ∙ 𝜏0  = 

 

                        →     <𝑃(𝑓)>2

𝐵𝐹𝑙∙𝑇
    with    𝐵𝐹𝑙   =    1

(𝑁+1/2)∙2𝜏0
  =    𝑓𝑀𝑀𝑀

𝑁+1/2
        [43] 

 

<P(f)> is the power within the effective bandwidth of one frequency pixel assuming that the spectral power 
density is constant within the filter width so that <P(f)2> = <P(f)>2. (The cross-term between the two sin-terms 
in the brackets vanishes.) Again, the radiometer-equation is valid here, but the fluctuation bandwidth BFl is 
now identical with the resolution-bandwidth δRes which is only possible for a box-car filter as is obviously not 
present here. The conclusion must be that a correlator system, as is discussed here, generates more radio-
metric noise as it is supposed to do. The performance of the correlator is not as ideal as a normal spectrom-
eter would perform as far the fluctuation bandwidth is concerned.  
 

The reason for this must be related to the filter-function – the Sinc-function – which has unrealistic negative 
values in the side lobes although the power detected cannot be negative ! In order to avoid this one frequently 
uses a method called “apodization”. Instead of using the direct Fourier-transform formula one “apodizes” the 
correlator data by: 
 

                 𝑃(𝑓)    =   � �1 − |𝜏𝑛|
𝜏𝑁

� ∙ 𝑔(𝜏𝑛) ∙ 𝑅2𝜋𝑖∙𝑓∙𝜏𝑛

𝑁

𝑛=−𝑁

 
 

The corresponding filter-function is now: 
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               𝑙(𝑓)   =   𝜏0
2 ∙ 𝑠𝑖𝑛2[𝑁∙𝜋∙(𝑓−𝑓0)∙𝜏0]

𝑠𝑖𝑛2[𝜋∙(𝑓−𝑓0)∙𝜏0]
       [44] 

 

as one can find after some tedious calculation. This filter-function is non-negative everywhere and it seems to 
be more plausible. For the resolution and the fluctuation bandwidth we get now: 
 

               𝛿𝑅𝑡𝑠   =   2 ∙ 𝑓𝑀𝑀𝑀
𝑁

,     𝐵𝐹𝑙  =   3 ∙ 𝑓𝑀𝑀𝑀
𝑁

. 
 

These expressions are certainly more meaningful as the ones above, but the price is that one has only half 
the resolution, and one gets only half the number of useful pixels in comparison. The filter-function has 
smaller side-lobes as before, which is preferable. The apodization method is generally used in most of the 
correlator-spectrometers, and with lower and lower prices for the digital electronics it is nowadays not a major 
problem to implement. 
 

Frequently it is stated in literature, that a Fourier-transform spectrometer is more sensitive than an ordinary 
spectrometer with the argument that one observes the full power of the whole band with the detector instead 
of small portions seen in a conventional spectrometer. This must be seen in the context of the noise power 
contributed by the detector itself. When considering additional detector noise, only that part of the detector 
noise contributes to the noise which is transmitted by the effective filter width of each frequency channel (see 
above). This is different in conventional spectrometers, since the detector noise is fully present on each fre-
quency channel of the spectrometer. But, only the dark-noise makes mainly the difference, since the shot-
noise originating from the signal current itself is in case of the classical spectrometer nearly zero, but a lot 
higher in case of the FTS. The difference between the two spectrometer methods depends obviously on the 
detector dark-noise alone. In the visible frequency range detector dark-noise may be more or less neglected, 
there should be no difference. When going to the far-infrared, Fourier-transform spectroscopy is obviously 
advantageous because of the generally rather high detector dark-noise in this frequency range. 
 
 
    The Digital Fourier-Transform-Spectrometer (DFT) 

 

(The effect of finite sampling) 
 

A nice example how correlation can lead to surprising outcomes of particular techniques is the Digital-Fourier-
Transform-Spectrometer. This fairly new technology is obviously a very attractive method for future coverage 
on growing spectrometer needs in various research areas. With rapid sampling of the input voltage received 
from a radiometer output by means of a fast A/D converter and subsequent Fast Fourier-Transformation (FFT) 
a spectrum is directly calculated and averaged afterwards. Nowadays bandwidths of a couple of GHz are 
achieved, which is the consequence of the newest developments of very fast digital electronics.  
 
 
    Signal output 
The DFT determines the frequency amplitude of the input amplitudes of a signal, which are rapidly sampled 
with an ADC in constant time intervals τ0. These data are then Fourier transformed via a FFT (Fast Fourier 
Transformation) like 
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k indicates here the numbering of the individual data sets, which are separately Fourier transformed. N is the 
length of each data set, which should be equal to some power of 2 when applying the Fast-Fourier-Transform 
method. n is the numbering of the data within each data set. The data s(t) are sampled at times t0+(kN+n)·τ0. 
Each set consists of N such samples, which are then repeated K times (index k). In general, we can write: 
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u(f’) is the “true” frequency amplitude of the signal s(t). Since s(t) is supposed to be real, we have u*(f) = u(-f). 
The calculated power spectrum │Uk(f)│2 is then given by: 
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We distinguish between the calculated amplitude spectrum U(f) and the true amplitude spectrum u(f), since 
they can differ under certain circumstances.  
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The measurement is repeated K times, and the average represents the final spectrum. The expectation value 
of the average is given by: 
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KNτ0 is the total integration time of the spectrum. Since the phases of u(f’) are supposed to be completely 
random, the expectation value of this product will be zero with the exception of f1 = f2. Thus we can write:  
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with δ(x) the Dirac Delta-function. When summing up we get now: 
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We can expand now again the denominator with 
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Therefore we have: 
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Λ(f') is the periodically continued power spectrum with 
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Note that this transformation is only possible, if the spacing τ0 between the data is constant. In order to avoid 
aliasing problems we have to assume that there is no overlap from different orders s. It is therefore important 
that the input power spectrum does not contain components at frequencies above fMax = 1/(2τ0) and below 
fMin = -1/(2τ0). At the same time, the observing frequency f should not lie outside this frequency interval as 
well. Then we can write: 
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0 )/'()'( τsfuf for    02
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1 /)('/)( ττ −−<<+− sfs  
This removes now the sin2-function in the denominator under the integral, but it requires that the input to the 
spectrometer is properly filtered. By the way, if one uses a filter which transmits at frequencies in the interval  
(s-½)/τ0 < │f'│< (s+½)/τ0  with s ≠ 0, one can observe the spectrum at frequencies f’  within the same interval 
without pre-processing the input by means of an additional frequency converter. Certainly, a suitable filter at 
the input side must be implemented. (Note that this is only going to work properly, if the AD-converter does 
not average over an appreciable fraction of the sampling interval τ0. Otherwise, the response to the input fre-
quencies becomes reduced and the overall efficiency is degraded.) 

For white noise we can write: 
    constufu ==>< 22)'(   within the allowed frequency range, and therefore   
             constuf ==Λ 2)'(  
Thus, we get finally when integrating: 

      ><=>< 22 )()( fufU K  
The calculated power spectrum is identical with the true power spectrum. This is also valid for realistic spectra 
as long as <│u(f’)│2> does not vary within the relevant part of the Sinc2 function in the numerator. 
If we have a coherent carrier as input  <│u(f’)│2> = u02·δ(f’-f0), then we have: 
 

   𝑆(𝑓)  =  < ⌈𝑈(𝑓)⌉2 >  =    𝑡0
2∙𝜏0
𝑁

∙ 𝑠𝑖𝑛2[𝜋(𝑓−𝑓0)∙𝑁∙𝜏0]
𝑠𝑖𝑛2[𝜋(𝑓−𝑓0)∙𝜏0]    ≈   𝑡0

2

𝛿𝑅𝑒𝑠
∙ 𝑠𝑖𝑛2[𝜋(𝑓−𝑓0)/𝛿𝑅𝑒𝑠]

[𝜋(𝑓−𝑓0) 𝛿𝑅𝑒𝑠⁄ ]2    [45] 
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with δRes = 1/(Nτ0). This Sinc2-function we call the filter function S(f) of the DFT-spectrometer which we can 
determine by experiment while scanning a synthesizer line in small steps through the position of one fre-
quency pixel of the spectrometer.  

The filter function should be used to calculate the fluctuation bandwidth, which is the bandwidth needed for 
the radiometer equation. We find BFl = 3/2·δRes, which does actually not agree with the experimental results. 
So far, so good! No doubt, the DFT provides a correct representation of the spectrum, but the calculation of 
the noise seems to reveal some problem.  
 
 
    Noise output 
For the noise seen with the spectrometer we have to find the value of 

22222 )()( ><−><= fUfU KKKσ  
The second term we know already, for the first term we have: 
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with tk,n = (k·N+n)·τ0. Since all phases of u(fi) are random, we can use: 
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The first term delivers the square of the expectation value of the average. For the last term it should be re-
membered that u*(f) = u(-f). Therefore, we have now: 
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For the moment, let us consider the case K=1, where just one set of N sample data is being used. In this 
case, the first term under the integrals is equal to unity, and we have: 
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Again, we can replace the denominators sin[x] by x when limiting f and f’ to the allowed frequency range while 
using the periodic continuation of the input spectrum. For white noise and f = λ/(Nτ0) (λ = ±1, ±2, ±3,…, │λ│< 
N/2) we have therefore for the first term: 
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τλσ     with tInt = Nτ0 and BFl = 1/Nτ0 

The second term above does not contribute here. When comparing with the radiometer equation it means that 
the noise is determined by a fluctuation bandwidth BFl = 1/Nτ0 and not by the result found with the Sinc2-filter 
function. But, this is not really conclusive because the usual radiometer equation is not supposed to be fully 
valid here (tInt has to be very large compared to 1/BFl ! See above.). On the other hand, since each of K data 
sets is statistically independent on the others, one should expect that σK2(λ/Nτ0) = 1/K · σ12(λ/Nτ0). 

Nevertheless, we have to determine with some more mathematics, how the noise is developing at long inte-
gration time, i.e. when repeating the measurement many times (tInt = K·Nτ0, K » 1). Then we can rewrite the 
first factor in the expression for σ2K»1(f) with: 
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The expression is valid for K very large. When using this we get 
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Again, we consider white noise only so that Λ(f’) becomes constant = u2. For frequencies f = λ/Nτ0 the inte-
gral can be evaluated. For s = 0 we get: 
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The first term leads to: 
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This is equivalent to the expectation with the Sinc2-function. But there are other terms to consider as well. 
The second term gives: 
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(The cross term from the square of the bracket is zero when integrating.) In total we have consequently for 
s = 0: 









+⋅==>> 2

4

0
2

1 )2(
13/2)0,/(
λπ

τλσ
K
usNK

 

Similar, we find for s ≠ 0, s = ±1, ±2. ±3, …: 
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The second term in the bracket is introduced again by the f’+f  terms in the equation above, and it cancels 
with the result for s = 0 when summing. Thus, we have finally: 
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The sum is infinite because of the periodic extension of the input spectrum, as explained before. It leads now 
to the Riemann Zeta-function with  
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with BFl = 1/(Nτ0), since the total integration time is given by  tInt = K·Nτ0. 

This rather complicated derivation is essential for a full understanding of the noise performance of the DFT. 
The result of the average is equivalent to that of one single sample, which reflects the fact that the Fourier 
transforms of each data package are completely un-correlated. It is remarkable that the definition of the fluc-
tuation bandwidth does not represent the pure radiometric noise, and the conclusion is that there must be a 
reason for the additional noise, which seems to be hidden behind the mathematics. 
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    Correlation function 
 

A similar calculation can be done for the correlation function of two frequency pixels of the spectrometer at 
frequencies fλ = λ/Nτ0 and fμ = μ/Nτ0,  λ, μ = ±1, ±2, ±3, …. For this, we need to evaluate the following expres-
sion: 
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The treatment of this expression is very similar to that above. As it turns out, there are only a few significant 
terms of the sum of the Delta-functions remaining. We have for the numerator while neglecting a couple of 
unimportant factors: 
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For s ≠ 0 we have: 
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All other cross-terms disappear. For s = 0 we get: 
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In total, when summing, the contribution is zero. Similar results are found for the (f’+f) terms, so that we have 
zero correlation for all pixels with the exception of  λ = μ. By definition, the correlation function is then equal to 
the variance of the statistical distribution of the pixel. It is therefore clear that the correlation function is not that 
of the Sinc2-filter function, as one could expect. It becomes understandable when considering the input am-
plitude at a frequency of λ/(Nτ0), which has a simple Sinc(f-f0)-response function, is affected by other fre-
quency components in the neighborhood. For example, a contribution at a distance of ½/(Nτ0) contributes 
with negative 62% (-2/π) to the amplitude at the pixel frequency. Thus, we have anti-correlation to such input 
components. It means, that, if the amplitude of a frequency component at this distance moves accidentally 
upwards, the amplitude of the center component will move into the opposite direction. This behavior does not 
disappear when taking the square of the amplitude. Thus, the anti-correlation persists, but the correlation be-
tween adjacent pixels seems to vanish when integrating over all frequency contributions. Therefore, it follows 
that there is no correlation between adjacent pixels, which is only correct for white noise input. This result for 
the correlation function corresponds to the findings for the fluctuation bandwidth. One should be aware that 
the baseline of the noise spectrum of the spectrometer looks different than that of a filter-bank or an AOS, be-
cause these exhibit correlation between neighbored pixels so that their fluctuations appear less erratic.  
 
 
    Conclusions 
The mathematical treatment above supports the experimental finding that the noise output of the DFT is 
higher than one would expect from the filter function of the spectrometer. The missing correlation between 
neighbored pixels is difficult to interpret, when considering the fact that the filter curves of adjacent pixels 
overlap. But consequently, the noise decreases faster than usually when binning several frequency pixels. 
Therefore, for large bins, the deviation of the noise output from expectation vanishes. This compensates for 
the increased noise level at the beginning, as long as very high frequency resolution is not required. It seems, 
all this is a fundamental property of the DFT, which is introduced by the principle how the DFT functions. By 
the way, a CTS (Chirp Transform Spectrometer) should have the identical problem. It also Fourier transforms 
chunks of data by using the chirp technology. Each chunk has exactly the time length as given by the resolu-
tion similar to the DFT. Therefore, the fluctuation bandwidth is also reduced by a similar factor. 

The outcome of the mathematics above is surprising when comparing with the situation in an AOS or any 
other spectrometer. In principle, the AOS does exactly the same as the DFT. In the Bragg-cell a time segment 
of the signal amplitude is present as travelling acoustic wave within a time window as is determined by the 
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acoustic velocity and the length of the aperture of the Bragg-cell. The imaging behind the Bragg-cell estab-
lishes the Fourier transform of the signal, which the CCD then detects. The photodiodes in the CCD are 
square law detectors, and the generated charges represent the square of the Fourier-transformed amplitude 
of the signal. So far, the characteristics of an AOS should be similar to that of the DFT. Experience tells that 
this is not correct. The filter function of the AOS leads directly to the observed fluctuation bandwidth, and the 
observed pixel to pixel correlation function is following the expectation as well. Similar arguments one may 
introduce for other spectrometer types, since any filtering is usually based on interference, i.e. correlation 
between many waves. Why is the performance different? 

There is one fundamental difference between the two instruments, which is the way, how the signals are av-
eraged. In the AOS this is not done in blocks of N signal data, but instead it is a continuous averaging of the 
square of the Fourier-transform, which takes place during the total integration time. This means that, instead 
of summing over K Fourier transforms, we have to sum over K·N  Fourier transforms. Therefore, the term 
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must be replaced by (K very large!) 
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With proper frequency filtering of the input only one term with s = 0 survives. Therefore, when following the 
derivation above, the terms with s ≠ 0 do not contribute anymore, so that the fluctuation bandwidth becomes  

          sFL N
B Re2

3
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2
3 1 δ

τ
⋅=⋅=  

The conclusion is that it is not the discrete Fourier transformation, which is responsible for the characteristics; 
It is the averaging scheme, which causes the differences. This points to a somewhat theoretical solution of the 
problem: The FFT should be implemented after each single reading of the input signal s(tn). This is probably 
not a viable option, since such calculation would be needed every 0.5 nsec for a 1 GHz DFT for example. On 
the other hand, exactly this is done in the AOS automatically so that the difference between the two spec-
trometer types becomes now understandable. By the way, the AOS would behave comparably to the DFT, if 
the laser source would be pulsed with a repetition rate corresponding to the traveling time of the acoustic 
wave through the Bragg-cell aperture. The noise problem of the DFT reduces significantly when calculating 
the Fourier transform of a data set after sampling N/q data so that all data are used q times. The resulting ad-
ditional contribution reduces then to 1/3·1/q2. Thus, already for q = 2 one has a reduction of the excess noise 
by a factor of ¼! This level corresponds to an increase of the rms noise by 6.1% in comparison to the pure 
radiometric behavior instead of 22.5% with q = 1. Correspondingly, the observing time increases only by 
12.5% instead of 50%. 
 
 
    Correlation between frequency pixels in a spectrometer 
 

One of the important issues during the development of a spectrometer is how the contents of adjacent pixels 
are eventually correlated. For an estimate we calculate the difference of the contents of both pixels. The am-
plitude filter functions of both pixels are A1(f) and A2(f). For the expectation of the difference we have: 
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We have assumed that the noise amplitudes within the range of both filter functions are constant, i.e. that we 
are dealing with pure white noise at the input. For the variance of the difference we have then: 
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For the lengthy integral expression we can use the same arguments as before about the non-zero contribution 
of u(f), and we get now: 
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The Sinc2-function becomes again a Delta-function for large T so that we get now 
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On the other hand we have: 
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and finally 
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We replace again │A1(f)│2 and │A2(f)│2 by the power filter function L1(f) and L1(f) and use the relation between 
the constant c and the average power and we get 
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The Xi are the signals of the ith  pixel of the spectrometer. The additional factor “2” results from the fact that the 
signals are the difference of two independent measurements “On” and “Off”.  
 

It is obvious that the correlation between the two pixels is independent on the integration time T. Its value is 
readily found when knowing the two filter curves of the pixels. Differences in gain cancel through the expres-
sions in the denominator. The correlation is small in case the two filter curves have little overlap. It is at maxi-
mum (=1), if L1(f) and L2(f) are proportional. In this case the variance of the differences vanishes. 
 

To simplify things further we assume also that we have two similar pixels at identical power level. Then we 
have 
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In this case we have now 
 

                 𝜎𝐷
2(𝑇)   =   2 ∙ 𝜎2(𝑇) ∙ [1 − 𝛷12]       [46] 
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This derivation is of particular interest, if one wants to compare the noise of two different spectrometers. In 
case the filter functions of the pixels are not exactly identical, one observes some leftover noise in the differ-
ence. The same is true if the pixels are shifted in frequency with respect to each other. One should keep in 
mind that the above derivation does not apply for correlator- as well as digital-correlator-spectrometers, since 
their filter-functions do not reflect the mutual correlation as is shown above. Therefore, in such cases Eq.[46] 
is not applicable. 
 
 
    Correlation at additional spectrometer noise 
 

The previous derivation is only exact, if the observed noise is generated exclusively by the input signal to the 
receiver. If the spectrometer is adding some noise, then one has to consider this separately. For this we are 
using a simple statistical consideration. The variance of the difference measurements is defined as: 

12
2
2

2
1

2
2

2
1

2
22

2
11

22112
2

2
1

2
2

2
1

2211
2

22
2

11

22

)()(2)()(

])()([])()([

])()([])()([)()(2)()(

])()([])()([2])()([])()([

])()([)(

gTTTT

tStStStS

tStStStSTTTT

tStStStStStStStS

tDtDT

TTTT

TTTT

TTTTTTTT

TTD

⋅⋅⋅−+=

=
>><−<⋅>><−<

>><−⋅><−<
⋅⋅⋅−+=

=>><−⋅><−<⋅−>><−<+>><−<=

=>><−<=

σσσσ

σσσσ

σ

 
g12 is the normalized first order correlation function of the two signals S1 and S2. When comparing with the 
above treatment, we find for the pure radiometric noise case 

 1212 Φ=g  
In a spectrometer like an AOS the detected noise consists of two contributions: the radiometric noise and the 
shot- and dark-noise of the detecting CCD. In the AOS we have therefore: 
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q is always larger or equal then unity since the noise is at least that of the incoming RF. For example, we can 
write for the CCD noise: 
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BFl is the fluctuation bandwidth of the spectrometer, δ is the frame time for the read-out of the CCD, n0 is the 
full well capacity of each of the CCD pixels, r is the ratio of full well and dark noise rms, α is the signal level at 
the CCD relative to the full well capacity of each pixel, and β is the ratio of ADC maximum to full well of the 
CCD. A typical value for β is near 0.9, while α can be anywhere between 0.05 and 1.0. The second term is 
caused by the photo-electron shot noise and the third by the dark current. (Similar expressions should apply 
for the detector noise of other spectrometer types as well, since shot noise and dark- or read-out-noise are 
common phenomena of practically all detectors.) 
 

The expectation of the product S1 and S2 is now influenced by the two different contributions. For this we 
write: 
 2,1),()()(,)()()( ,, =+=><−= itStStStStStS spectriRadiiiii δδδδ  
Then we get 
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All non-radiometric noise contributions from the spectrometer pixels are uncorrelated. The same is valid for 
the products of radiometric and spectrometer noise. Therefore, only the radiometric term survives. 
 

The cross term above considered only the radiometric part, so that we have to modify it. We had: 
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Consequently we have now: 
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With identical radiometric noise from both pixels we get 

 ]2[)()( 12
2
2

2
1

22 Φ⋅−+⋅= qqTT RadD σσ  
In case the two spectrometer pixels are seeing the same signal level we have q1 = q2 = q, and we have then: 

                 𝜎𝐷
2   =   4 ∙ <𝑆(𝑡)>2

𝐵𝐹𝑙∙𝑇
∙ [𝑞2 − 𝛷12]      [47] 

The impact of correlation can directly be calculated by means of the correlation function as is already defined 
above. One can evaluate it by building products of the content of the frequency noise output of the spectrom-
eter. The spectrum should be shifted pixel by pixel and the product of all available pixels should be calculated. 
One obtains the correlation function of the frequency output of the spectrometer: 
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k is the number of the shift in terms of frequency pixels. 1 and 2 stands for the two spectra – here the identical 
spectra - which should be correlated and N is total number of available pixels. In case there is unwanted 
structure in the baseline of the spectra it is recommended to apply a low order baseline fit to the data in order 
to avoid the influence of “ripple” to the calculation of the correlation. The Si,n (i=1,2) are the pixel data, as they 
are for example derived from (ON-OFF)/(OFF-Z) or other calibrated observations (Z is the Zero-measurement 
of the spectrometer.) minus the baseline fit. g12(0) is identical with the above defined correlation g12. The ap-
pearance of the correlation function as a function of k contains now all information, if different spectra are 
suspected to be correlated. In this case the expectation value of g12(k) will become unequal to zero for some 
values of k. Certainly, also the autocorrelation can be found when setting S1,n = S2,n. The appearance of the 
auto-correlation function is a very useful tool to find out about particular problems in the spectrometer such as 
electronics, speckles and their stability in the AOS, read-out of CCDs etc. As is mentioned above, also here 
the situation with correlator- or digital correlator-spectrometers is different. 
 
 
    Noise when adding two spectrometer pixels 
 

A frequent question is how the statistics of co-added pixels looks like. For this we can follow the identical 
mathematics as before. For the variance of two pixels, in particular of two adjacent pixels one has: 
  

     S(T)  =    [S1(t) +  S2(T)] / 2  
 

   σS
2(T)  =    �σ1

2(T) +  σ2
2(T) + 2 ∙  �σ1

2(T) ∙ σ2
2(T)  ∙  g12� / 4 

 

Assuming that  
 

  σ1
2(T)  =   σ2

2(T)   =   σ2(T), 
 

then we get: 
 

     σS
2(T)   =    σ2(T)  ∙  [1 +  g12]   = 

 

                =    σ2(T)  ∙  [1 +  ϕ12/q2]    
 

Φ12  is the mutual overlap of the two frequency pixels (see above). With zero correlation one obtains the ex-
pected result: the variance becomes half. But with correlation the result is larger! In such cases it is impossible 
to reduce the noise of experimental data to the expected level by means of co-adding pixels.  
 

Usually it is advisable to keep the correlation, i.e. the value of g12 of adjacent pixels as small as possible. Only 
then the value of the content of the other pixel provides something new in terms of statistics. At large overlap 
of the filter functions of pixels one generates largely the identical information in both pixels, as is certainly un-
desirable. At the same time, the statistical fluctuations are partly identical, which means that there is only little 
improvement of the signal to noise ratio. Therefore it is important to determine the frequency spacing of 
neighboured pixels on the basis of the expected correlation of the pixels. 
 
 
    Noise of many co-added frequency pixels 
 

Frequently, it is useful to co-add several neighboured frequency pixels, as is needed for example when de-
tecting the continuum level of a source or when observing broad signals from external Galaxies. According to 
the radiometer equation one should expect an appreciable reduction of the noise. As we have seen above for 
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the case of co-adding two pixels, it may be not as effective as one might hope for. Again, the outcome de-
pends strongly on the correlation between the pixels. (The consideration is also valid for the co-addition of 
data taken in a time series, if there is correlation due to a time constant for example.) We assume to co-add N 
data Sk and we write: 
 

                   𝑌𝑁(𝑘)  =    
1
𝑁

 ∙  � 𝑆𝑘+𝑛

𝑁

𝑛=1

 

 

The variance of this co-added signal is then: 
 

    𝜎𝑁
2   =  < 𝑌𝑁(𝑘)2 > − < 𝑌𝑁(𝑘) >2  = 

 

            =    𝜎1
2

𝑁2 ∙  �𝑁 ∙ 𝑔(0) + 2 ∙ 𝑁 ∙ ∑ (1 − 𝑘
𝑁) ∙ 𝑔𝑁−1

𝑘=1 (𝑘)�  =     [48] 
 

         =    𝜎1
2

𝑁
∙  �1 + 2 ∙ �1 − 1

𝑁
� ∙ 𝑔(1) +  2 ∙ �1 − 2

𝑁
� ∙ 𝑔(2) + ⋯ � 

 

g12(k) is the correlation function of the initial data Sk. The result does not depend simply on 1/N as one might 
expect. Only at N very large it becomes simpler, if the values of the g12 approach zero fast enough. Without 
correlation we find the ordinary result: 
 

      σN
2   =    σ1

2

𝑁
   with   σ1

2 the variance of the initial data. 
 

How much the outcome differs depends on the actual values of g12. For example, if all data are fully corre-
lated, i.e. g12(k) = 1 for all k, then one gets: 
 

      σN
2   =    σ1

2  
 

and the improvement of the signal to noise becomes zero. Normally the filter curves of neighboured pixels in 
AOS overlap, and we found with our spectrometers by experiment values like 
 

       g12(1) ≈ 0.45,  g12(2) ≈ 0.2,  g12(k>2) ≈ 0 
 

Such values depend in an AOS on the quality of the optics, the appropriate adjustment, the Bragg-cell itself, 
and the characteristics of the CCD. One should always try to make the values of the correlation as small as 
possible. If one considers Nyquist-sampling for example one should have a value for g12(1) below 0.5.  
 

As an example we consider a co-add of 10 pixels. Using the above values for the correlation we get then: 
 

   σN
2   =   σ1

2

10
 ∙  �1 + 2 ∙ �1 − 1

10
� ∙ 0.45 + 2 ∙ �1 − 2

10
� ∙ 0.2�   =    σ1

2

4.7
 

 

The rms-error reduces here to 
 

    1
√4.7

  ≈   0.46   instead of   1
√10

  ≈   0.32 
 

It means that the noise level is now about 46% higher than expected.  It is essential that one considers even-
tual correlation between the pixel data before expecting too much. 
 

One should also look into the outcome when co-adding very large numbers of pixels.  In the ideal case of 
identical filter-functions and identical gain one should expect that the resulting equivalent filter-curve has prac-
tically the shape of a box-car filter and the resolution bandwidth becomes accordingly: 
 

    δRes   ≈    N ∙ δ 
 

with δ the pixel frequency spacing. This is only correct if the pixel spacing is small as compared to the resolu-
tion bandwidth of the individual pixels. (Otherwise the result of the co-addition would not result in a box-car 
like filter curve.) Because of the near box-car shape the fluctuation bandwidth BFl should be practically identi-
cal with the resolution bandwidth δRes. Thus we have also: 
 

     𝐵𝐹𝑙(𝑁)   ≈   𝑁 ∙ 𝛿 
 

On the other hand, we have for N large: 
 

    σN
2  =   σ1

2

N
 ∙  [1 + 2 ∙ g12(1) + 2 ∙ g12(2) + ⋯ ]   =    σ1

2

Neff
 

 

In addition we have the radiometer equation: 
 

    σN
2  =   <yN>2

BFl(N)∙T
 

 

<yN> is identical with <S> and we have therefore: 
 



83 
 

    σN
2  =   <S>2

BFl(N)∙T
 =   <S>2

BFl(1)∙T
∙ 1

N∗   with 
 

     N∗  =   N/[1 + 2 ∙ g12(1) + 2 ∙ g12(2) + ⋯ ] 
 

The resulting fluctuation bandwidth is therefore under the above assumptions: 
 

    BFl  =   N∗ ∙ BFl(1)   =   N ∙ δ 
 

Thus we have: 
 

    BFl(1)  =   δ ∙  [1 + 2 ∙ g12(1) + 2 ∙ g12(2) + ⋯ ] 
 

We have found a simple method to compare the fluctuation bandwidth as found by means of the Allan vari-
ance plot with above formula using the values of the correlation function as found from the noise data of 
spectrometer spectra10. A different outcome is a hint for additional noise in the spectra, which might reduce 
the correlation. (Again, the situation with correlator- and digital correlator spectrometers is not the same.) 
 
 
  

                                                           
10   This formula is only approximately correct. Exactly we have: 

 

              𝐵𝐹𝑙  =   �∫ 𝐿(𝑓) ∙ 𝑑𝑓∞
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2
∫ 𝐿2(𝑓) ∙ 𝑑𝑓∞

0�   =    1
2

∙ ∫ Φ(𝜈) ∙ 𝑑𝜈∞
−∞  

 

with    Φ(𝜈)  =    1
2

∙ ∫ 𝐿(𝑓) ∙ [𝐿(𝑓 + 𝜈) + 𝐿(𝑓 − 𝜈)] ∙ 𝑑𝑓∞
0 ∫ 𝐿2(𝑓) ∙ 𝑑𝑓∞

0�   
 

This becomes identical with above formula, if Φ(ν) is slowly varying so that the integral can be replaced by its Riemann sum on the 
basis of the interval δ replacing the integral. It is only correct as long as δ is small enough. Experience confirms that above formula 
is still valid when applying Nyquist-sampling. Consequently, the procedure remains rather useful. 
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V. Miscellaneous 
 
    Modulation-Transfer-Function (MTF) 
 

In spectroscopy it should be a standard question, what spectrometer, i.e. what resolution of the spectrometer 
should be applied for the particular needs of the research. In many cases this is probably not much consid-
ered because there is little choice between different spectrometers with appropriate resolution. But still, if 
there is for example a spectrometer available with too high resolution one can still apply the co-adding of fre-
quency pixels in order to adjust the effective resolution to the needs of the scientific task. The same is actually 
true for observing maps of signals from sky with a telescope in order to learn about the distribution of particu-
lar signals in space. A rarely used method to investigate such problems is the use of the so-called “Modula-
tion-Transfer-Function” (MTF). One finds it in descriptions of CCD line- or matrix-arrays, but otherwise it is 
mostly ignored. 
  

When considering the properties of a spectrometer the MTF is easily calculated by the normalized Fourier-
transform of the pixel-filter-function l(f). It provides information how the spectrometer shows eventual periodic 
structures in the spectrum. If we Fourier-analyze the spectral distribution, the various contents at particular 
Fourier-components F become visible as are given by this expression: 
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M(F) is always equal to unity for the frequency F=0. It means that a constant offset in the spectrum is fully 
visible. (In some cases instead of a Fourier-component the response to a box-car-function is considered, as is 
meaningful for example in case of CCDs, since they represent a rectangular filter-function for each pixel of the 
CCD.)  
 

In general it is more important to determine the Signal-to-Noise (S/N) of the Fourier-component at frequency F 
seen with the particular spectrometer. In case of radiometry we can describe this by the expression 
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It provides information, how well spectral features of spatial frequency F can be detected with a particular 
spectrometer with filter-function l(f).  
For a constant offset signal (F=0) the S/N is obviously determined by √BFl. The function allows now to find out 
what frequency resolution is best for the detection of particular features in the spectra. Certainly, the higher 
the resolution the better the amplitude of the features at given frequency F can be determined, but the noise 
on the other hand is increasing with higher resolution. Therefore, a compromise can be found, where the sig-
nal can be seen at best signal-to-noise. In cases, where one wants to detect special features like Gaussian 
line-profiles for example, a different approach like a wavelet calculation instead of the MTF can be applied 
(see below). Similar, if the noise in the system is not purely radiometric, the fluctuation-bandwidth should be 
replaced by an appropriate figure. But in general, the MTF is very useful in most cases. For instance, if one 
has a box-car like filter, the MTF and the S/N are calculated as 
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For F = 1/δRes the response is here for example zero, since a full period of the spatial frequency F falls into the 
width of one pixel. 

For a Sinc2-filter characteristics of an apodized correlator we have: 

   ]1[/,11)( ReRe2
3

0Re sss FNSkFF
N
kFM δδτδ ⋅−⋅⋅==⋅−=−=     

for a component of the spectral distribution with period F = k·τ0, k = 1,2,3,… It means that a spatial compo-
nent, which amounts to exactly one resolution bandwidth (F = 1/δRes), cannot be observed. Therefore, Nyquist-
sampling, i.e. one resolution element per half the resolution bandwidth, is not useful. One should remember 
that the idea of Nyquist-sampling is based on the structure of Delta-function-like signals, and not of distributed 
features (see below).  

For the Sinc-function one finds: 

          sNS Re/ δ=
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Thus we have: M(F)  =  1   für 0 ≤ F < 1/(2δRes), which is remarkable, but not surprising, since the Fourier-
transform of the Fourier-transform of a rectangular filter is the same filter again.       

With a Gaussian filter-function, as we have e.g. with an AOS or rather closely with a telescope beam on sky, 
we get: 

        𝑙(𝑓)  =   
1

𝛿𝑅𝑡𝑠
∙ 𝑅𝑥𝑒{−𝜋 ∙ 𝑓2 𝛿𝑅𝑡𝑠

2⁄ },     𝑀(𝐹)   =   𝑅𝑥𝑒{−𝜋 ∙ 𝐹2 ∙ 𝛿𝑅𝑡𝑠
2 } 

      𝑆 𝑁⁄   =    �√2 ∙ 𝛿𝑅𝑡𝑠 ∙ 𝑅𝑥𝑒{−𝜋 ∙ 𝐹2 ∙ 𝛿𝑅𝑡𝑠
2 } 

For F = 1/δRes we see still 4.3% of the amplitude of the signal.  

A Lorentzian filter-function leads to: 

        𝑙(𝑓)  =   
𝛿𝑅𝑡𝑠
𝜋2
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𝜋 �

2 ,     𝑀(𝐹)  =   𝑅𝑥𝑒{−2 ∙ 𝐹 ∙ 𝛿𝑅𝑡𝑠} 

  𝑆 𝑁⁄   =    �2 ∙ 𝛿𝑅𝑡𝑠 ∙ 𝑅𝑥𝑒{−2 ∙ 𝐹 ∙ 𝛿𝑅𝑡𝑠} 
At F = 1/δRes one can still see 13,5% of the modulation amplitude. 

Sometimes it might be more useful to apply some kind of a wavelet- instead of a Fourier-analysis. In many 
cases a molecular line has the appearance of a Gaussian, for instance, if Doppler-broadening is involved. It is 
therefore useful to calculate  
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Δ½ is the full half-width (FWHM) of the Gaussian distribution, which can now be varied to describe the respon-
sivity to Gaussian-like features in the spectra. In addition, the filter-curve of acousto-optical spectrometers 
(AOS) is more or less a Gaussian. Due to the characteristics of the Gaussian shape, it becomes evident that 
the modified MTF rolls off rather slowly at smaller line-widths. How this roll-off looks like depends on the filter-
function of the spectrometer. It is not easy to present correct formulas for the MG(Δ1/2) unless the spectrometer 
filter-function is also a Gaussian. In this case we have: 
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The modified MTF becomes now: 
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The roll-off  at small Δ1/2 definitely slower than otherwise. The Signal-to-noise is now: 
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Although this discussion looks a bit theoretical, it might be worthwhile to consider it carefully. The new Digital-
Fourier-Transform-Spectrometers (DFT) usually provide a lot more frequency resolution than is needed in 
practically all cases. Therefore, nearly any desired resolution can be generated by co-adding without serious 
loss in information. It is then a matter of data processing afterwards in order to find the best possible S/N for 
the discussion of the results. Here one can eventually improve the data quality appreciably by means of the 
tools presented above. 
 
 
    Nyquist Sampling 
 

In many cases Nyquist sampling is recommended when measuring complete maps of a source on sky or fully 
sampled spectra with a spectrograph. The initial idea about Nyquist sampling was that one has data which are 
derived by means of a "Delta-comb" so that there is zero overlap of the spatial or frequency response function 
of the instrument. The assumption is therefore that with each position one obtains 100% information about the 
signal strength at that position. This is only a (nearly) correct assumption, if the spacing between the data 
points is large in comparison with the filter width of the instrument. The situation changes when dealing with a 
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dense sampling grid. The main question is how much additional information one can derive when increasing 
the density of the grid. For an estimate we can use the MTF, which we define, as before, as the convolution of 
the instrument filter function l(f) with a sinusoidal power distribution of the signal at a (spectral or spatial) fre-
quency ν. This could be a Fourier-component of the spectral distribution for example. 
 

For the MTF we need to calculate the integral  
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For an AOS or a telescope with Gaussian illumination we can approximate the filter function by a Gaussian: 
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Here again, the so called "resolution bandwidth" δRes of a filter (or "beam solid angle" of a telescope) is given 
by : 
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as we have already used earlier. With this we get now: 
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The MTF is 1 at very small spatial frequency ν and approaches zero with large ν.  
 

Nyquist sampling defines the distance between adjacent data points, and one usually assumes that one 
should have two data samples per maximum observable frequency period νMax. If the instrument has a resolu-
tion δRes, it sounds plausible that the spacing of the data points should be 1/2·δRes. In this case we have 
ν=1/δRes, and we get for the MTF at this spatial frequency: 
 

    !!%3.4)exp()/1( Re =−== πδν sM  
 

Thus, the measured amplitude of a signal contribution at spatial frequency 1/δRes is very small. Consequently, 
it is not worthwhile to consider fully sampled maps, because the derived additional information is practically 
close to zero, but is very costly on the other hand in terms of observing time. If we increase the grid spacing to 
δRes (ν = (2δRes)-1), the response becomes 45.6%, which is still not very satisfying but already useful. Certainly, 
real filter functions are not Gaussian, but in all standard cases the approximation is close enough to reality. 
The discussion here concerns only one dimension, but things don't change significantly, when talking about 
two-dimensional maps. 
 

The result above can be compared with the value of the correlation function of two adjacent pixels. If we as-
sume two identical pixels spaced by a distance s, we have for the correlation between the two data: 
 
 

            𝑔12(𝑠)   =   
∫ 𝑙(𝑥 + 𝑠 2⁄ ) ∙ 𝑙(𝑥 − 𝑠 2) ∙ 𝑑𝑥⁄∞

−∞

�∫ 𝑙2(𝑥 + 𝑠 2) ∙ 𝑑𝑥 ∙ ∫ 𝑙2(𝑥 − 𝑠 2⁄ ) ∙ 𝑑𝑥∞
−∞  ⁄∞

−∞

   =   𝑅𝑥𝑒 �−𝜋 ∙
𝑠2

2 ∙ 𝛿𝑅𝑡𝑠
2 � 

 

Thus, the correlation of two data points at Nyquist sampling is 
 

    g12(s = δRes/2)  =  67.5% 
 

Correlation means, that the statistical fluctuations seen with the second data point are by more than two thirds 
identical with that of the first point. With s = δRes, the correlation is only 20.8%.11 
 

As a rule of the thumb one might consider an optimized Nyquist pixel spacing at a MTF near 0.5. This sug-
gests a spacing of s ≈ δRes. The correlation has there a value of 20.1%. It means that a Fourier-component of 
a period of ν ≈ (2·δRes)-1will be observed with nearly 50% of the real amplitude. As one can see, the infor-
mation provided by the MTF is not exactly identical with that of the correlation, which is not a surprise, since 
the MTF provides information about signal sensitivity while the correlation describes the noise behavior. It is a 

                                                           
11  One should keep in mind that the noise argument, as is considered by correlation, applies only if the signals seen with 

the pixels are observed simultaneously, as is valid for example in a standard spectrometer. Even with array-receivers, 
the situation is not equivalent since the noise is independently generated in the mixers of the individual receivers, so 
that noise-correlation does not occur. 



87 
 

matter of the user to decide what one considers as more important. With the KOSMA AOS we have typical 
values of the correlation between adjacent pixels of about g12 = 0.45 (see above), which fits quite well to the 
pixel spacing of 1.03 MHz. The MTF is therefore about 50% when setting ν ≈ (2·δRes)-1. When measuring 
maps with a telescope it might be worthwhile to consider the observing economy as most important, i.e. the 
MTF is decisive. It is also clear that correlated noise between adjacent pixels is not of importance, for in-
stance, if the data are taken subsequently. In that case the noise is not correlated, since the data are not 
taken at the same time. 
 
 
    Resampling  
 

Resampling procedures are useful when reducing the amount of data which are delivered by high resolution 
spectrometers for example in order to simplify the handling and to reduce the amount of the partly superfluous 
data. The same might apply for large maps measured with telescopes on sky. Resampling is also needed, if 
higher resolution spectra are co-added or resampled in order to reduce resolution or to make spectra of differ-
ent spectrometers comparable. In general, just do-adding an integer number of pixels might be sufficient, but 
things look different, when trying to make spectra of different sources, i.e. spectrometers or telescopes, com-
parable. In that case one has to consider resampling of non-integer numbers of pixels. Just when co-adding 
fractions of pixels one ends with different effective new pixel resolutions and/or fluctuation bandwidths, de-
pending on the accidental positions of the center-frequencies of the new pixels on the initial grid. In the partic-
ular case of Acousto-Optical Spectrometers a proper resampling procedure is essential when linearizing the 
frequency scale of the spectrometer, because it is usually non-linear within 1 or 2 %. In the latter case the 
resampling algorithm should reproduce the characteristics of the channel profiles of the spectrometers, i.e. the 
filter curves should look similar after resampling. In case of filter-banks, the filter curve is a Lorentzian or a 
multiple of it in case of multi-pole filters. With AOS one has a curve which looks very similar to a Gaussian. 
DFT or Chirp-Transform-Spectrometers (CTS) have usually Sinc2-characteristics or similar, but their resolution 
is typically very high, so that it is rather unlikely that other spectra need to be resampled to the resolution of 
the spectra of DFTs or CTSs.  
 

When considering the situation of AOS, one could propose, to use a linearized new grid with the pixel width of 
the average of the pixel separation of the initial spectrometer grid. In some cases the new pixel position just 
coincides with the position of the initial grid with the consequence that the resolution and fluctuation bandwidth 
is identical with the old one. But, if the position of one of the new pixels is just halfway between two old ones, 
one needs to co-add the content of two adjacent old pixels with 50% of their content. In consequence, one 
ends up with about twice the resolution and fluctuation bandwidth of the old pixels. This now practically unde-
fined situation is rather unfavorable and the resampling procedure should therefore be modified. Actually, for 
maps taken on sky at a non-regular grid one would have the same kind of difficulties. In order to reduce the 
problems in the particular in case of AO’S-spectra we therefore propose a resampling procedure using a 
Gaussian weight function. The first step to resample is to identify the frequency calibration of the spectrome-
ter. This is usually no issue with filter-banks of DFT, but AOS or CTS may exhibit some deviations from linear-
ity so that the exact pixel to frequency calibration has to be found by comb-spectra for example. In case the 
frequency calibration is well established, the resampling routine can be applied. The next step is to determine 
the pixel spacing of the resampled spectrum. It might be advisable to use optimized Nyquist sampling, i.e. the 
new pixel spacing D could be about equal to the resolution bandwidth of the new resampled frequency pixels 
(see above, but other spacing is also possible). We call δ the resolution bandwidth of the initial spectrum and 
Δ the width of the resampling function (in our case a Gaussian), then we can write: 
 

              𝐷 =   √∆2+𝛿2    or   ∆ =   √𝐷2 − 𝛿2 
 

This defines now the width of the resampling function. Here we have assumed that the width of the initial and 
the resampling function co-add like Gaussians, i.e. the resulting width equals the square-root of the sum of the 
squares. In case of AOS-spectra this is a fairly good approximation. Gaussians have the advantage that their 
role-off in the wings of the filter function is fairly steep so that correlation with other pixels becomes rather 
small. By the way, the Gaussian resampling method might also be rather useful when applied to maps of the 
intensity distribution of extended sources taken with a telescope, since the beam profile of radio-telescopes is 
usually also not very different form Gaussian profiles. 
 

The resampling procedure uses now the following algorithm: 
 

    The new frequencies are given by: 
 

           𝑓𝑗  =   𝑓0 + 𝑗 ∙ 𝐷,   𝑗 = 0,1,2, … , 𝑗𝑀𝑀𝑥,    𝑓𝑀𝑖𝑛  ≤ 𝑓𝑗  ≤ 𝑓𝑀𝑀𝑥 
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fMin and fMax are the minimum and maximum frequencies of the input spectrum. The resampling of the initial 
data xn at frequencies νn to new data yj at frequencies fj is now given by: 
 

          𝑦𝑗  =   
1
𝑁

∙ � 𝑅𝑥𝑒 �−𝜋 ∙
(𝜈𝑛 − 𝑓𝑗)2

∆2 � ∙ 𝑥𝑛 ∙ 𝑑𝜈𝑛
�𝜈𝑛−𝑓𝑗�<𝑘∙Δ

 

 

dνn is the frequency separation between adjacent pixels of the input data, which can slightly vary in an AOS, 
but are constant with Filter-banks for example. The constant k should be set to k ≈ 1.7; it confines the sam-
pling interval to a width of 3.4∙Δ. (The exponential function has there a value of about 0.0001.)  The normali-
zation-factor N makes the result to “1” if all the xn are constant and unity. Thus we have: 
 

          𝑁  = � 𝑅𝑥𝑒 �−𝜋 ∙
(𝜈𝑛 − 𝑓𝑗)2

∆2 � ∙ 𝑑𝜈𝑛
�𝜈𝑛−𝑓𝑗�<𝑘∙Δ

 

 

In case of very narrow spacing of the input data one has approximately:  N ≈ Δ  for  dνn « Δ. It should be men-
tioned, that near the two ends of the frequency band the sampling does not provide reasonable results, since 
the number of available data within the sampling interval shrinks. But this would happen with any resampling 
procedure. 
 

In order to obtain some feeling of the characteristics of the resampling procedure, it may be worthwhile to in-
vestigate the resulting filter-curve, the effective resolution bandwidth and the fluctuation bandwidth as well. 
The new filter-curve L(f) can be constructed by means of a measured filter-curve l(f) of the initial data. The 
center-frequency of the original filter-curve we call f0 (it should be identical with the frequency of a pixel of the 
initial data), fc is the center-frequency of the resulting filter-curve, which does not necessarily coincide with the 
frequency of the new pixel, but should not deviate by more than half a pixel width from the center-frequency f0 
of the initial filter-curve. f is the frequency of the new resampled pixel. Then we have: 
 

          𝐿(𝑓)  =   
1
𝑁

 ∙  � 𝑅𝑥𝑒 �−𝜋 ∙
(𝑓𝑛 − 𝑓𝑐)2

∆2 � ∙ 𝑙(𝑓 + 𝑓𝑛 − 𝑓0)
|𝑓𝑛−𝑓𝑐|<𝑝∙∆

 

 

f0 is now the frequency of the pixel next to the center of the Gauss-distribution. Depending on the distance, the 
resulting resolution bandwidth  
 

       𝛿𝑁𝑡𝑁  =    ∫ 𝐿(𝑓) ∙ 𝑑𝑓/𝐿𝑀𝑀𝑥 
 

will vary slightly across the band for the new pixels. In order to keep this effect small the resampling width Δ 
should be at least twice the pixel frequency distance of the input data. The same is true for the new fluctuation 
bandwidth. A too small width is not advisable. 
 
 
    Noise at Resampling 
 

Resampling is also a linear function of data, and the resulting data are most likely also correlated. We assume 
that the variance of all input data are the same and equal to σy2. We had earlier for the error of arbitrary linear 
functions of correlated data (see Eq.[26]) 
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The function pn is in this case: 
 

          𝑒𝑛  =   1
𝑁

∙ 𝑅𝑥𝑒 �−𝜋 ∙ �𝜈𝑛−𝑓𝑗�
2

∆2 � ∙ 𝑑𝜈𝑛    with 
 

            𝑁  = � 𝑅𝑥𝑒 �−𝜋 ∙
(𝜈𝑛 − 𝑓𝑗)2

∆2 �
�𝜈𝑛−𝑓𝑗�<𝑘∙Δ

∙ 𝑑𝜈𝑛 

 

The spacing dνn we can replace by the locally more or less constant frequency spacing d within the 
resampling interval 2∙k∙Δ. With the approximation that the sum above can be replaced by the integral, as is 
allowed if Δ sufficiently large, we find: 𝑁 ≅ ∆.  
 

For the first term in the brackets we have: 
 

        ∑ 𝑒𝑛
2   ~   𝑑 ∙ ∫ 𝑒2( 𝜈 − 𝑓𝑗) ∙ 𝑑𝜈 =   𝑑

√2∙∆
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For the correlation terms we find: 
 

        ∑ 𝑒𝑛 ∙ 𝑒𝑛+𝑞   ~   𝑑
√2∙∆

∙ 𝑅𝑥𝑒 �−𝜋 ∙ (𝑞∙𝑑)2

2∙∆2 �   =   𝑑
√2∙∆

∙ 𝑆𝑞
½    with   𝑆𝑞   =    𝑅𝑥𝑒 �−𝜋 ∙ (𝑞∙𝑑)2

∆2 � 
 

Thus we have: 
 

       𝜎𝑑
2  =   𝜎𝑥

2  ∙  �1 + 𝑔1 ∙ 𝑆1
½ +  𝑔2 ∙ 𝑆2

½ + ⋯ � ∙ 𝑑
√2∙∆

. 
 

The gm are the values of the correlation between adjacent or more pixels. Again, the reduction of noise is 
strongly dependent on the correlation between the pixels of the input data. (See also above: “Fit of a Gauss-
ian”, Eq.[29].) 
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